Reinforcement Learning of Motor Skills Rosearn.

using Policy Search and Human SR
sagepub.co.uk/journalsPermissions.nav
www.sagepub.com/
®SAGE

The International Journal of Robotics
©The Author(s) 2018
CO rrectlve AdVIce DOI: 10.1177/ToBeAssigned
Carlos Celemin'2, Guilherme Maeda®*, Javier Ruiz-del-Solar', Jan Peters®, and Jens Kober 2

Abstract

Robot Learning problems are limited by physical constraints, that make learning successful policies for complex motor
skills on real systems unfeasible. Some Reinforcement Learning methods like Policy Search offer stable convergence
toward locally optimal solutions. Whereas Interactive Machine Learning or Learning from Demonstration methods allow
fast transfer of human knowledge to the agents. However, most methods require expert demonstrations. In this work,
we propose the use of human corrective advice in the actions domain for learning motor trajectories. Additionally, we
combine this human feedback with reward functions in a Policy Search learning scheme. The use of both sources
of information speeds up the learning process, since the intuitive knowledge of the human teacher can be easily
transferred to the agent, while the Policy Search with the cost/reward function take over for supervising the process and
reducing the influence of occasional wrong human corrections. This interactive approach has been validated for learning
movement primitives with simulated arms with several DoFs in reaching via-points movements, and also using real
robots in tasks like “writing characters” and the game ball-in-a-cup. Compared to a standard Reinforcement Learning
without human advice, the results show that the proposed method not only converges to higher rewards when learning
movement primitives, but also the learning is sped up by a factors of 4 to 40 times depending on the task.

Keywords
Reinforcement Learning, Policy Search, Learning from Demonstrations, Interactive Machine Learning, Movement
Primitives, Motor Skills.
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Figure 1. Ball-in-a-cup task execution of a policy learned using
the Interactive Policy Search method proposed.

Wilhelm, et al. 2012); and ‘golf swing’ (Maeda et al. 2016)
among others.

The mentioned tasks have been solved using policies
based on models that present some generalization capa-
bilities such as the Dynamic Movement Primitives (DMP)
(Ijspeert, Nakanishi, and Schaal 2002), primitives based
on Gaussian Mixture Models (Khansari-Zadeh and Bil-
lard 2011), or Probabilistic Movement Primitives (ProMP)
(Paraschos et al. 2013). These models have interesting prop-
erties that can be convenient in many applications. Move-
ment Primitives can be learned through demonstrations,
and/or by self-improvement using Reinforcement Learning.

In robotics, Reinforcement Learning (RL) (Kober,
Bagnell, and Peters 2013) has been used to learn and
improve movement primitives, often initially acquired from
demonstrations. Policy Search (PS) methods have shown
to be particularly suitable for learning with real robots
(Deisenroth, Neumann, and Peters 2013), attaining higher
rewards with respect to the initial (demonstrated) policy.
However, the optimization process requires a large number
of trials, which is usually impractical or expensive when
using real systems. Also, PS strongly relies on good
demonstrations, since it is a local search method (Deisenroth,
Neumann, and Peters 2013), but for certain tasks the
human may not be able to provide useful demonstrations,
particularly when the dynamics of the task or limitations
of the robot are unknown. For example, how many swings
are required to achieve a ball-in-a-cup task given a heavy
ball and a robot with limited accelerations that cannot toss
the ball high enough in one shot. This lack of intuition
suggests some form of interactive learning process where
human knowledge is added/transferred as the robot optimizes
the policy.

In this work, we propose a method for learning motor
skills with real robots, which renders convergence feasible

in very few episodes. It combines PS algorithms with human

corrections in order to leverage the exploration provided by
policy search with the knowledge of a human teacher. Our
proposed method guides the exploration of a PS algorithm
with the human teacher’s current knowledge of the task. We
assume this process is dynamic in the sense that the teacher
knowledge also improves as he/she observes the effects of
his/her corrections through the interaction of the robot with
the environment and its respective performance.

The corrections advised by the teachers are in the actions
domain, since it fits better to PS methods (actor-only); in
previous works it has been shown that the corrective advice
in this domain fits better with continuous action problem:s,
and that non-expert users can lead the learning agents to high
performance policies, even though they cannot teleoperate
the agent properly to fulfill the task (Celemin and Ruiz-
del-Solar 2018). Moreover, humans like to provide feedback
in this domain more than in the evaluative domain. It has
been shown that users prefer to give information about “how
to execute the task” or “how to improve the task” than
“how good is an action or a policy” (Thomaz, Hoffman, and
Breazeal 2006; Suay, Toris, and Chernova 2012; Amershi
et al. 2014). Therefore, the framework COACH (COrrective
Advice Communicated by Humans) (Celemin and Ruiz-del-
Solar 2018) is used to incorporate the teacher corrections
in the PS loop, in which the human occasionally advises
corrections during execution time. The advice is a relative
change of the magnitude of the action executed at time step
t. The advice is given to the agent during execution but in the
time step ¢ + 1, which is immediately after the execution of
the action to be corrected.

Additionally, this paper introduces a method to adapt
COACH for training policies in problems where the teacher’s
corrections are in the task domain, but the policy computes
actions in the joint space. This mismatch between the
reference frames of actions and human corrections, is known
as the “correspondence problem” (Argall, Chernova, et al.
2009; Schaal, Ijspeert, and Billard 2003; Breazeal and
Scassellati 2002). The mapping of the human corrective
feedback in the task domain onto the the joint space, allows
to effectively train policies for robot arms of several DoF.

The experiments presented in this paper show that the
proposed method can be used by users to shape detailed
trajectories with vague action corrections. The human
corrective feedback for shaping trajectories is tested in a
problem of learning to write characters with simulated and
real robot arms. Significant reductions in the number of trials
required to learn reaching movements with simulated arms
are presented, actually the introduced method is tens of times
faster than conventional PS when the arm has 50 DoF. The
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method is also tested in the real world problem ball-in-a-
cup task (Figure 1). In this case, successful policies can
be obtained 4 times faster compared to the traditional PS
approach.

The remainder of this paper is organized as follows:
Section 2 presents related work. Section 3 provides
background of the methods proposed in this work. Section 4
introduces the use of corrective feedback to shape movement
primitives. The PS method with human corrective advice,
which is the main contribution of this work is presented in
Section 5. In Section 6 the validation experiments and the
results are presented. Finally the conclusions are discussed

in Section 7.

2 Related Work

This section presents a brief introduction to Interactive
Machine Learning (IML) methods

application for training movement primitives. The closest

along with their

approaches to the method proposed in this work are
described, whereas their limitations are listed in order to

motivate the presented contribution.

2.1 Interactive Machine Learning

Considering the drawbacks already mentioned about LfD,
learning approaches that address the participation of human
teachers throughout the entire robot learning process—
as opposed to only the initial demonstration—-have been
proposed. When observing a current sub-optimal policy
execution, the teacher obtains some insights about policy
enhancement, and participates in the learning loop by
interactively providing feedback during policy learning, in
order to perform corrections.

The teacher’s feedback can be evaluative. In these
approaches, the teacher evaluates how desirable an executed
action is, through signals of reward or punishment.
Interactive Reinforcement Learning (Thomaz and Breazeal
2006), TAMER (Knox and Stone 2009), or the work
of Thomaz and Breazeal (2007) have explored the
considerations of this kind of human feedback in contrast
to the reward function of an autonomous reinforcement
learning scheme. Moreover, human teachers can assess
policies in learning from human preferences approaches, in
which the teacher iteratively observes the execution of two
different policies and chooses the one that is considered best
(Akrour, Schoenauer, and Sebag 2011; Akrour, Schoenauer,
Sebag, and Souplet 2014), with good results in simple
tasks; this approach has also been applied to learn complex

simulated tasks with deep neural networks (Christiano et al.

2017), and applied to manipulation tasks with real robots in
(Jain et al. 2013).

The feedback given by a human teacher can be corrective
in the actions domain. The agent can be interrupted by
the user while executing a policy, in order to perform
improvements (Mericli, Veloso, and Akin 2011). The user
provides demonstrations for the current state, and this new
data is attached to the policy, in order to be executed
in similar states. For tasks of continuous actions, Advice-
Operator Policy Improvement (A-OPI) (Argall, Browning,
and Veloso 2008) is a framework that allows human teachers
to provide corrections on relative changes to the executed
actions (e.g., relative change of the action magnitude).
COrrective Advice Communicated by Humans (COACH)
(Celemin and Ruiz-del-Solar 2018), is a framework based on
the same kind of feedback used by A-OPI, but additionally, it
is intended to be used at execution time, since it has a module
that models the human teacher’s intentions, for adapting the
size of the policy correction, and a module that handles the

delay of the human response.

2.2 Interactive Corrections with Movement
Primitives

Interactive corrections can also be applied in the context of
movement primitives. In this case, corrections are used to
update the parameters that shape the characteristics of the
robot movement. The feeding assistance robot developed
by Canal, Alenya, and Torras (2016) is pre-programmed
with a ProMP (Paraschos et al. 2013) for feeding disabled
people. Then, a framework is proposed to allow caregivers
to personalize the original trajectory to the preferences of the
disabled person. In this framework the caregiver physically
adapts the ProMP execution through kinesthetic feedback.
The new executed path is recorded to create a new ProMP.
Argall, Sauser, and Billard (2011) proposed a system that
allows the modification of a primitive during execution with
tactile feedback. If the user provides a correction with an
effector displacement with respect to the original trajectory,
the displacement is applied from there on to the rest of the
path, then all the data-points are recorded for re-deriving the

policy after the execution.

Kinesthetic teaching is used for incremental refinement
of trajectories of context-dependent policies (Ewerton et
al. 2016) represented with ProMPs, wherein the user may
modify the trajectory execution for performing a correction
to correct it. Then, the data-points of the recorded trajectory
are applied to update the probability distribution of the
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ProMP. That method was tested in reaching tasks with a robot

arm.

Interactive Corrections via Coarse
Feedback

2.3

There are a number of cases where none of the previous
approaches can actually be applied. Here we describe
a few scenarios. (a) There is no expert available to
provide high-quality demonstrations that lead to a policy
with acceptable performance (e.g., a person with disability
without a caregiver, who needs to fix a policy for a
new task or environment). (b) The final user does not
have access to an interface to provide new demonstrations
such as intuitive tele-operation interfaces, wearable sensors,
or motion capture systems. (c) The robot is not back-
driveable or its dimensions are not suited for direct human
physical interaction required by kinesthetic teaching. (d)
The task involves fast robot movements, making kinesthetic

corrections impractical and/or unsafe for the teacher.

In these cases, wherein detailed feedback cannot be
provided to the learner, approaches like A-OPI or COACH
that are based on simpler signals of correction are better
suited. Since there is no possibility of detailed corrections,
these algorithms are suitable because in this case the human-
agent interface does not need tactile or force sensors, and can
be limited to simple, sparse, occasional and vague commands

given via a keyboard, voice commands or gestures.

The approach by Schroecker, Ben Amor, and Thomaz
(2016) is closest to our work, where the problem caused by
the absence of expert demonstrations was partially overcome
by combining a PS algorithm with the interactive definitions
of via-points for adapting DMPs. In that work, the teacher
could stop the trajectory execution and move (physically or
remotely) a robot to a desired position at that specific time
step. This via-point correction was then used to update the
distribution used for the PS exploration. The method was
validated in simulations of writing letters and object insertion
with a robot arm. The approach by Schroecker, Ben Amor,
and Thomaz (2016), however, only addressed the kinematics
of the tasks, focusing on the shape of the trajectories. This
interactive PS strategy is not suitable for tasks where the
dynamics are dominant (e.g., throwing and catching an
object) since stopping the task to adapt a specific via-point
is physically impractical and the instant of correction is
not evident. Also, modifying a via-point to satisfy certain
kinematic configurations invariably affects the acceleration

and thus the outcomes of a dynamical task.

In this paper, we use COACH (Celemin and Ruiz-del-
Solar 2018) as the mechanism for interactive corrections
as it allows human feedback to be introduced during robot
execution. However, COACH was originally designed for
interactive optimization of policies in a Markov Decision
Process (MDP) setting. In this paper, we provide a new
formulation of COACH for time-dependent parametrized
policies that makes it compatible with the improvement of

movement primitives.

3 Background

The learning method proposed in this paper is a hybrid
algorithm that employs the interaction of a human teacher
for guiding the convergence of a PS algorithm through
the COACH framework. This section briefly introduces the
basics of Policy Search (PS), followed by the COrrective
Advice Communicated by Humans (COACH) framework.

3.1 Policy Search

Known as Actor-only methods, policy search is a class of
reinforcement learning algorithms that learn parametrized
policies directly in the parameter space using a cost or reward
function. Different from critic methods, these algorithms do
not compute a value function. Computing the value function
requires observing transitions in the complete state-action
space, which means a high demand of data and time that
is not feasible with most real physical systems. Therefore,
in robotic applications, PS is often more suitable than value
function based RL. Additionally, the use of parametrized
policies reduces the search space, which is important in
cases with time and energy limitations as is usually the case
of learning with robots (Deisenroth, Neumann, and Peters
2013).

Moreover, in robotic applications PS is a better choice
than value-based methods due to the properties of scalability
and stability of the convergence (Kober, Bagnell, and Peters
2013), because a small change of the policy may lead to large
changes of the value function, which in turn can produce
large changes of the policy. Given unlimited training on
simulated environments, this high sensitivity to parameter
changes may be convenient for finding the globally optimal
solution. Real robots, however, demand stable, smooth, and
fast convergence.

Typically a PS method works with three steps as shown
in Algorithm 1: exploration, evaluation, and updating. The
exploration step creates samples of the current policy
for executing each roll-out or episode. In the evaluation

step, the quality of the executed roll-outs is assessed,
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i.e., the exploration done during the roll-out execution is
evaluated with the cost or reward function. The update step
uses the evaluation of the roll-outs to compute the new
parameters of the policy. This update can be based on policy
gradients, expectation-maximization, information theoretic,
or stochastic optimization approaches.

During the last years, several PS algorithms have been
proposed and evaluated using different strategies in each
of the three steps. For the case of policies represented as
movement primitives well-know algorithms exist, such as
Policy learning by Weighting Exploration with the Returns
(PoWER) (Kober and Peters 2009), Relative Entropy Policy
Search (REPS) (Peters, Miilling, and Altun 2010), Policy
Improvement with Path Integrals (PI2) (Theodorou, Buchli,
and Schaal 2010), and black-box optimization methods
such as Covariance Matrix Adaptation Evolutionary Strategy
(CMA-ES) (Hansen and Ostermeier 2001; Stulp and Sigaud
2013; Metzen et al. 2014). Our proposed method can work
with any PS variant by accessing the exploration noise and
adapting it with human feedback.

3.2 COACH: Corrective Advice
Communicated by Humans

With COACH (Celemin and Ruiz-del-Solar 2018), a human
teacher provides occasional binary feedback as a correction
in the action domain, in order to update the current policy
for the state wherein the advised action was executed. The
trainer has to advise the correction immediately after the
execution of the action to be modified. The binary signals are
increase or decrease the magnitude of the executed action,
and this signal could be independently given for every degree
of freedom that compose the action vector. The interactive

learning is based on the four modules reviewed below.

Human Feedback Modeling H(s) is a model learned
during the training process that tries to predict the human
advice regarding the current state s. The model is applied
to compute the adaptive learning rate used for updating the
parameters of the policy model P(s). That prediction defines
how much the policy will be modified when the teacher

advises a correction in the visited state s.

Algorithm 1 Model Free Policy Search

1: repeat

2:  Explore: Execute M roll-outs using 7y,

3:  Evaluate: Obtain outcomes of trajectories or actions

4:  Update: Compute 741 given the roll-outs and
evaluations

5: until Policy converges 71 ~ 7y,

Human Feedback Supervised Learner This module
updates the parameters v of the Human Feedback model
H(s) = ®Tv, using a stochastic gradient descent based
strategy. These weights are updated proportionally to the
value of the prediction error, i.e., the difference between the
human advice h and the prediction given by H (s). The state
space is mapped to the features space onto the features vector
®, which is the same used in the Human Feedback Model

H(s) and the Policy Model P(s).

Policy Supervised Learner The policy P(s) is the model
which maps the observed states onto actions (P(s) =
®7w). When a human teacher advises a correction, s/he is
trying to modify the executed P(s); therefore, this module
updates the weights vector of the policy model (w), also
using a stochastic gradient descent based strategy. But in
this case, the error prediction is unknown, since the teacher
provides the correction trend, not the exact value of the action
to be executed. Due to this error assumption COACH sets the

prediction error as:
error = h - e, (N

with h and e the sign and magnitude of the error respectively,
h is the teacher feedback (-1 or +1 that is decrease or
increase), and e is a constant value defined at the beginning
of the learning process.

When the teacher needs to apply a large change to the
magnitude of the action at a state s, s/he would advise
a sequence of corrections of constant sign (either only
+1 or only -1), these corrections in the Human Feedback
Model make the absolute value of the prediction H(s)
asymptotically tend to 1, which is the largest possible
magnitude. On the other hand, when the user is fine tuning
the magnitude of the action with small changes, the sequence
of advised corrections would alternate between -1 and +1,
which makes the absolute value of H(s) tend to 0. This
correlation of |H (s)| and the size of the action modification
intended by the teacher can be used to detect when to apply
small or large updates to the policy by means of an adaptive
learning rate based on this prediction. The adaptive learning
rate or size step of the policy is calculated from |H (s)|, the

absolute value of H in each time step.

Credit Assigner This module is necessary for problems of
high frequency, in which human teachers are not able to
advise each executed continuous action at every independent
time step. The Credit Assigner module tackles this problem
by associating the feedback not only to the last state-

action pair, but to several past state-action pairs. Each
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Figure 2. General scheme of COACH with its internal module

past state-action pair is weighted with the corresponding
probability that characterizes the human response delay.
In this process a new feature vector is computed by the
Credit Assigner (®°7?); this is the actual vector used by
the Human Feedback and the Policy Supervised Learners.
This module is borrowed from TAMER, which introduces a
gamma distribution based on psychological studies of human
response to events of different complexities. That distribution
is often approximated by a uniform distribution in its support
region, so it prunes time steps with low probability, more
details can be found in the paper by Knox and Stone (2009).

The general scheme of COACH is presented in Figure 2
wherein the connections of the aforementioned modules are

depicted.

4 Corrective Advice for shaping movement
primitives

This

algorithm for training parameterized movement primitives.

section proposes modifications of the COACH

The original COACH algorithm was proposed for an MDP
setting (Celemin and Ruiz-del-Solar 2018) where human
feedback is used to improve a policy that evolves under the
Markov assumption in a state-space s. In this article, the
goal is to adapt COACH for training movement primitives,
so human feedback can be used to correct a time dependent
policy. This work is focused on movement primitives such
as DMPs and ProMPs whose evolutions are defined by
a phase variable z;, but other representations are also
possible (Khansari-Zadeh and Billard 2011). Essentially, the
representation changes from the state variable s to the phase

variable z;.

In DMPs, the policy is represented by a dynamical system
comprised of a linear spring-damper (2), determined by the
constants oy, and 3y, and attached to a goal attractor Zggal.

ft = O‘f(ﬁf(-rgoal - mt) - xt) (2)

This system is modified by an arbitrary non-linear term
g(z)"w for shaping complex trajectories such that its

acceleration is:

1
iy = fy + g(z) w, 3)

where w is the parameters vector (or the weight vector),
g(z:) is the basis function vector, and 7 is the sampling time
of the system.

In the case of ProMPs,

probability distribution in the parameter space, represented

the policy model is a
with a mean and a covariance matrix obtained from a
set of demonstrations. During execution, this probability
distribution is conditioned for every specific context, so the
model applies the Bayesian rule of conditioning to compute
the most probable trajectory, given an observation. With the
Bayesian inference, a set of parameters w of a linear model
of basis functions is obtained and the trajectory is computed
using (4)

z = g(z) w. )

COACH can be used to train the movement primitive
by updating the parameter vector w via human advice.
The update uses stochastic gradient descent with the error

assumption in (1), and the derivative

dzy
8wl

= (g, )

where the right-hand side of the equation represents the [-
th basis function at time step t. Since this work is focused
on correcting single trajectories, in the cases of ProMPs, the
corrected vector w can be used for updating the global mean
and co-variance matrices as in (Ewerton et al. 2016).

The user advises local corrections during the motor skill
execution. This advice propagates over the next time steps as
changes of the weights are smoothed ahead by the shape of
the basis functions g, (usually radial-basis functions), so the

effect of the correction can be appreciated immediately.

While COACH can be used to advise corrections in both
task or joint space of the robot, advising corrections at the
joint level is not intuitive for humans who teach robots with
multiple degrees-of-freedom. Thus, hereinafter, this work
addresses the case where corrections are made in the task

space of the robot. In other words, we assume that the
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Figure 3. Learning Scheme for Movement Primitives in the
Cartesian space.

human is not going to advise corrections to the robot’s joint
movements. Under this assumption, the algorithm still needs
to be considered for policies computing actions in either
the task or joint domains. Especially in the second case,
the algorithm has to deal with the correspondence problem
between corrections in the end-effector space mapped to the
joint space. If the policy is represented at the task level in the
Cartesian space, the COACH adaptation is straightforward
and an Inverse Kinematics (IK) function must be used as
a last step to map the learned policy to the joint space of
the robot, as it is typically done for this kind of policies.
Conversely, if the policy is represented in the joint space, the
IK function must be used on the human feedback to translate
the human correction into the corresponding space.

For policies that represent the end-effector trajectory,
the learning scheme is simpler because according to our
assumption, human corrections are in the same domain, so
they can be used to directly modify the policy. Policies in
the Cartesian domain can be used only with robots that have
an operation mode that uses an inverse model, so it requests
commands in the end effector space and maps them to the
actions in joint space, e.g., an IK that translates position
requests to the respective vector of joint angles.

Figure 3 depicts the scheme for this case of policies. The
left-hand side shows the stage in which the demonstrations
are gathered and the initial policy is obtained; the right-
hand side shows the stage of learning with COACH wherein
the human teacher advises the executed action. The Update
block computes the COACH modules and modifies the
parameters vector of the policy; the blocks surrounded by the
red dashed line work during and after the learning process for
executing the current policy. Between the policy computation
and the action execution there is a block for mapping the
action computed by the policy onto the actuator space.

Algorithm 2 presents the general COACH framework
for training Movement Primitives represented with a

linear combination of basis functions. Functions like

computePolicy() or updatePolicy() perform different
computations depending on whether the policy represents
actions in task or joints space.

We first explain the algorithm considering the details
for training policies in the Cartesian space, thereafter we
introduce the differences for the case of policies in the joint
space, wherein the “correspondence problem” needs to be
solved. So, at the beginning some variables are stated, the
magnitude for the error assumption e in (1) and the learning
rate (3 are defined (lines 1-2). The n weights ¢, that represent
the probability function of the credit assigner are computed
(lines 3-4). The loop between lines 5 and 19 is executed
once per time step. The function get BasisFunctions(z;)
maps the phase variable to the features vector g, (line 6);
in line 7 the function compute Policy(w, g;) computes the
action based on the linear model of the policy (4), which is
used internally by the inverse model to compute the action
g: in joint space, then the action is executed by the robot
(line 8). If a human advice h is received before the next
time step (line 10), the steps in lines 12-19 are executed.
When there is a human correction, the features vector that
includes the weighted sum of the past features vectors ®¢"¢?
is computed (lines 13-14); afterwards, the expected Human
Feedback prediction H(z;) is computed (line 15) and its
parameters v updated with the SGD rule (line 16); the
adaptive learning rate a(z;) is obtained with an additional
bias that avoids situations where learning rates are almost
zero, that would preclude changes in the policy, after the
corresponding human correction (in practice, we set bias =

0.05) (line 17). The error assumption from (1) is computed

Algorithm 2 COACH for training Movement Primitives.

1: e < constant

2: B« constant

3: for 0 <t <ndo

4: ¢t < assignCredit(t)
5: for all z; do

6: gt < getBasisFunctions(t)

7: qr < computePolicy(w, g;)

8: takeAction(qy)

9: wait for next time step

10: h <+ getHumanCorrective Advice()
11: if 1 = 0 then

12: ered

13: for 0 <i<ndo

14: (I)cred — (I)cred + (Ci . gtfi)
15: H(z) « Pered” .y,
16: Av <+ B+ (h— H(z)) - dered
v v+ Av
17: a(z) < |H(z)| + bias = [@4" . v| + bias
18: errory < h-e-a(z)
19: updatePolicy(errorx, @74 w)




The International Journal of Robotics Research XX(X)

N
1
: Actuator 1
. . . . 1
MP Derivation 0 Policy Execution |
| Space :
I\ ]
.~ __ -
Actuator |space
Demonstrations
Update
Dataset
Actuat
Corrective SC ;:ear
Advice P
Human | Task
. IK
Demonstrations Teacher
s Space

Figure 4. Learning Scheme for Movement Primitives in the joint
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(line 18), named errorx where the subscript X means
that this error is defined in the Cartesian space. Then the
policy model is updated in a similar way as the Human
model but using the errorx assumption, so the function

updatePolicy(errorx, 74 w) computes Aw with
Aw « errory - dred 6)

and updates the weights of the policy.

Solving the Correspondence problem for policies defined
in the joint space:

Policies that map directly the actions in the joint space
are simpler to execute as they are already given as actuator
commands. However, during learning, more steps are
required for solving the “correspondence problem” between
the human advice and the actuators space. Figure 4 shows the
scheme for learning this kind of policies, in which the user
advises the correction in the task space, an inverse kinematics
block propagates this correction to the joints space, and the
updating block modifies the weights w based on the modules
of COACH. During policy execution (area surrounded by the
red dashed line), the inverse model is not needed because is
used only during the time steps advised by the teacher in the
learning process.

In contrast to the original COACH scheme, and the one
used for policies in the Cartesian space, wherein the human
model and the policy are in the same domain, here the human
model H is in the task domain, whereas the policy model
is in the joint space. Therefore, some additional steps are
necessary to compute the correction of the policy.

In this Algorithm 2 the

computePolicy(w, g;) computes directly the action ¢

case, in function
to be executed without the need of an inverse model, and
until line 18 the implementation is the same. The function
updatePolicy(errorx,®*? w) is the most important
change, since it is responsible for mapping the correction to

joint space.

Algorithm 3 describes this function in which errory is
mapped to the policy domain using Forward and Inverse
Kinematics models (FK and IK respectively). In line 2, the
vector g is not computed with the current basis functions
vector g,, but with the basis functions given by the credit
assigner, i.e., the policy computes the expected action to
be corrected according to the used human delay probability
distribution. The current effector pose is computed with
FK(q) and added to errorx in order to obtain the
“desired” effector position (line 3), which is used to obtain
the “desired” joint vector based on the IK (line 4). In line 5,
the difference between the “desired” joint vector and the one
computed by the current policy is considered the propagation
of the error from the task space to the actuator space, called
error,. Finally, the SGD is computed for updating the

weights w in lines 6 and 7.

5 Simultaneous Corrective Advice and
Policy Search for Learning Movement
Primitives

The learning methods presented in the previous section are
fully based on human corrections. This can be useful in
some simple problems, but, in some others, the inherent
drawbacks of interactive learning mentioned in Section 2.1
may influence the convergence more negatively. This section
presents a core contribution of this work—a synergistic
combination of Policy Search (PS) with human corrections—
in the sense that PS is used to reduce the impact of erroneous
human feedback, while correct human feedback is used to
speed up the learning process of a PS algorithm.

The proposed method combines the evolution of PS
algorithms with the knowledge a human teacher can share
based on corrective advice. According to the cost function,
the PS algorithm decreases or “filters out” the influence
of improper corrections given by the teacher. In essence,
our proposed method enables human guidance based on
COACH to influence and bias the exploration of a PS
algorithm in the form of exploration noise. Figure 5 depicts

Algorithm 3 Function update Policy(errorx , ®"¢¢ w) for
policies in joint space

1: def updatePolicy(errorx, e w)
g — @credT Cw

X, FK(q:) +errorx

Gr < TK(X4,qt)

errory < Ge — Gt

Aw < error, - ®red

w4 w+ Aw

A o
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Figure 5. Interactive Policy Search with COACH based
exploration.

the proposed scheme. An initial parameter vector w®"*
is disturbed either with the original exploration strategy
defined by the PS algorithm or with human guidance through
the roll-out execution. The parameter update is carried
out according to the particular PS implementation. These
iterations continue until convergence, resulting in a final
policy w’™? . As a result, this combination enables joint
skill learning, where the robot can start with a blank policy,
and human exploration is added whenever the human judges
his/her knowledge on the task can benefit the robot learning.

Thus, during the roll-outs selected to be advised by the
user, the COACH algorithm is run, but taking into account
that the vector w is loaded into a w; vector every time step in
order to have all the changes in memory, since the evaluation
stage (Algorithm 1, line 3) can be step-based depending on
the PS algorithm used as baseline (Deisenroth, Neumann,
and Peters 2013).

Algorithm 4 is a high-level description of the proposed
strategy for complementing PS with human advice during
the exploration stage. Similar to Algorithm 1, the Explore,
Evaluate, and Update stages are run every k-th iteration,
but with an important difference in the exploration process.

There are 2 exploration modes: the original exploration

Algorithm 4 Policy Search with Simultaneous Human
Guidance.

1: repeat
2: Explore: first roll-out with the current policy 7y,
wy = wlkl
3: for m = 1...M do
4: if HumanGuidance==True do
5: [wim]t + RunRollOutcoacu ([wm]1)
6: [w7rz+1]1 A [wm]T
7: else
8: [W]¢ + PS_exploration(w!*))
9: RunRollOut([wm]¢)
10: Evaluate: cost of each roll-out
[Runle = o1 + Yo"
11: Update: Compute new policy parameters using

w* ] Update([wm]s, [Rmli)
12: until Policy converges 7y 1 ~ 7

strategy of the PS method, and the exploration based on
COACH. The user chooses one of them through the flag
HumanGuidance (line 4). S/he would choose the COACH
based exploration when considers that is necessary and
possible to advise the agent, then the roll-out using COACH
is run (line 5), otherwise, the teacher allows the random
exploration of the original PS algorithm (lines 8-9). This
condition is kept constant for the entire rollout, so both
sources of exploration are not combined. This allows the user
to transparently observe the effect of his/her advice on the
policy.

The flag HumanGuidance can be switched differently
depending on the algorithm implementation. For instance,
the human-machine interface can query it before every roll-
out execution. Particularly, for the implementations of this
work, this flag is set False by default and switched on when
the user advises a correction. If during a roll-out the user
does not give corrective feedback, the flag is set False for the
following roll-out.

During each iteration of the PS algorithm, M roll-
outs of 7T time steps are carried out; the vector wll]
corresponds to w!™ in Figure 5. Vector [w,,]; contains
the parameters w at time step ¢ of the m-th roll-out. For
the roll-outs in which the user is giving corrective feedback
(HumanGuidance==True), the initial parameters vector used
for the m + 1-th roll-out (line 6) is the last one resulting from
the immediate previous roll-out, i.e., [w,,]r. This is in order
to keep the same policy that is being incrementally advised
by the teacher. The rest of the algorithm follows the regular
PS scheme.

6 Experiments and Results

The use of human corrective feedback is validated first for
shaping trajectories without the use of PS. Thereafter, more
complex experiments are presented to compare the proposed
Interactive PS with respect to conventional PS.

6.1 Learning movement primitives with

corrective aadvice

Experiments were carried out exclusively for evaluating
the use of COACH for training movement primitives. As
a proof-of-concept, we propose the problem of teaching
a robot how to write letters, in simulation and using a
real robot. The objective in this experiment is to evaluate
improvements that can be made on the shape of a trajectory
(encoded as a movement primitive) via corrective advice.
This improvement is quantified against the original set of

points that compose a letter, used as ground truth. Two
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Figure 6. Demonstrations recording.

different approaches were evaluated: policy refinement, and
policy reuse. In the first case, the goal is to improve the shape
of a given letter. The latter case addresses an application
of transfer learning, where the goal is to reuse one of the
existing policies, and reshape it via corrective advice to fit a

new desired symbol.

The procedure consisted of an initial stage, where a user
interface was used to visually indicate a reference letter
to be drawn on a screen. The user then provided a set of
demonstrations of trajectories for each indicated letter. A
RGB camera captured the user’s pen movement and recorded
the whole path into a dataset, which was used to train an
initial Cartesian policy, parametrized as a ProMP (4) but
without using the covariance. Figure 6 shows the screen of
the interface for recording demonstrations. The top figure
shows one instance of a human demonstration. The bottom
figure shows the reference symbol (in blue) overlaid with one
of the provided demonstrations (in red). The attached video*
shows the interface while demonstrations are recorded.

In a second stage, the user attempted to refine the policy
resulting from the first stage. Two different interactive
approaches were used for correcting the policy: (i)
corrections with more demonstrations, and (ii) corrections
with COACH. To quantify the performance of both
strategies, the learned symbols are compared with the ground
truth symbols using the Euclidean distance after alignment
with Dynamic Time Warping.

Error:0, 011056

Figure 7. Policy execution and correction with the simulated
3-DoF arm. Human feedback was used to make the robot draw
as close as possible to the reference letter (in blue). The initial
demonstration is shown in red.

The experiments were carried out both in simulation, with
a 3-DoF robot arm, and with a real URS5 robot with 6-
DoFs. Figure 7 shows the simulated case where the robotic
arm draws the learned symbol (in red) while the teacher
provides corrective feedback to correct the trajectory towards
the ground truth reference (in blue). In each experiment, five
participants demonstrated and corrected the robot primitive.
The participants were between 26 and 37 years old, three
engineers and two with background in social sciences. Each
user took a first session of practice to become habituated to

the interaction with the recording and corrective interfaces.

6.1.1
ment, a set of six symbols was learned (letters: a,c,I,m,p,s).

Experiments of Policy Refinement In this experi-

The objective was to improve and refine the trajectories
learned from demonstrations. For each symbol, three policies
derived from the first set of demonstration are compared.

- Primitives resulting from the original demonstra-
tions: For each letter, a policy was learned with a regression
using a batch of five demonstrated trajectories.

- Primitives resulting from corrections with COACH:
During five sequential executions, the users observed the
policy execution resulting from the five demonstrations
and simultaneously interacted to provide corrections using
COACH. The corrections were relative to the original policy
in the Cartesian space. The users used a keyboard with
two keys for correcting along the x axis, and two keys for
correcting along the y axis. The users advised corrections to

make the end-effector pass closer to the reference symbol.

*https://youtu.be/ptslNZdum2s?t=3
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- Primitives resulting from corrections with more
demonstrations: The users observed the initial policy
from the 5 demonstrations, and provided five additional

demonstrations for improvement.

Results of Learning with a Simulated Arm The Average
learning curves for all the symbols are plotted on Figure 8.
In the cases of learning only with demonstrations, the figure
plots a constant dashed line of the final error resulting after
the regression with the datasets. Since the symbols used as
reference are sets of points without physical dimensions, the
demonstrations recorded in the pixels space are normalized,
so the error measurements do not have units.

It is possible to see that correcting the trajectory with
COACH, shows that providing corrective feedback during
5 episodes of the trajectory, the error is decreased by
79.83%. On the other hand, the strategy of correcting
with more demonstrations only obtained around 40%
error reduction with respect to the primitives learned
with the first demonstrations dataset. The aforementioned
reductions mean that with the same amount of trials (five
new demonstrations vs. five episodes of correction with
COACH), with corrective feedback, a human teacher can
achieve almost double the error reduction with respect to the
strategy of recording more demonstrations.

Moreover, from the learning curves it is possible
to highlight, that with only one episode of corrective
advice with COACH, the human teacher can attain better
improvement than can be achieved with the new set of
five demonstrations. After the first episode of advising
corrections, the average error of the trajectories is decreased
by 73%. Most of the improvement is achieved in the first
episode. This observation is not only taken from the learning
curves, but also from the appearance of the learned letters.
For instance, Figure 9 shows the progress of improving a
trajectory with corrective advice, where most of the change
obtained from the corrections happens in the first episode.

Table 1 shows the final errors obtained after correcting
the policies with COACH and with more demonstrations
specifically for each of the six explored letters. Basically, the
trends of the average results are kept, only one anomaly is
highlighted: In the case of the letter “p”, after the process of
correction by recording more demonstrations, the error was
increased by 2.41%. A correcting session with the simulated

arm is shown in the video'.

Results of Learning with a Real Arm The previous
experiments were replicated using a real URS arm. The
same symbols and comparisons are used in this case. The

participants were between 23 and 29 years old, only three

Learning Curve
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Figure 8. Average error during learning to write with a
simulated arm.

a) 8 b@
’ a da
Figure 9. Trajectory correction progress: Learned Primitive
(red), symbol of reference (blue). a) Policy without corrections,
b) after 1 episode of corrections, c) after 5 episodes, d) after 8

episodes.

Table 1. Average error for each symbol trained. The error is
multiplied by 1072

Demos Corrections Corrections
(COACH) (more Demos)
Symbol % %
Error Error Decreased | Error  Decreased

error error

a 1.322  0.115 91.27 0.638 51.75
c 0.709  0.085 88.05 0.338 52.29
I 0.125  0.033 73.50 0.041 66.93
m 0.878  0.088 89.93 0.458 47.85
P 0.182  0.089 51.05 0.187 241
S 0.432  0.064 85.17 0.300 30.48

with engineering skills. The points composing the drawn
trajectories are obtained from the robot’s odometry, and
compared to the reference symbol for the error calculation.
Examples of corrected symbols are shown in Figure 10,
where the initial policy obtained from demonstrations is
drawn in white color, while the final trajectory after

5 episodes of correction is in red color. Figure 11

Thttps://youtu.be/ptslNzZdum2s?t=24
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Figure 10. Examples of learning the letters “p” and “m” with the
real robot. Policy derived from demonstrations (white), and
policy trained with corrective advice (red).

Learning Curve
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Figure 11. Average error during learning to write with a real
arm.

shows the average curves of learning and correcting with
demonstrations in contrast with the learning curve of
correcting with COACH. The error reduction obtained using
more demonstrations is on average 30.7% and around 84.4%
when using COACH. In this case, the error reduction with
the first episode of correction is 53.8%, which again is higher
than the one achieved with five new demonstrations.

The final results per symbol are listed in Table 2.
These results have similar trends as the results with the
simulated arm. The lowest error reduction is with the
symbol “p”, that is still higher than the average of the error
reductions resulting from the strategy of correcting with
more demonstrations. In general, these results are consistent
with the previous ones. The use of corrective advice to
shape trajectories is hence a good strategy for learning
agents from human teachers, especially in situations wherein
the combination of user expertise and quality of the user
interface does not obtain the best conditions for recording
high performance demonstrations. The results show that
detailed trajectories can be shaped easily only using vague
binary corrective feedback. A correcting session with the real
URS arm is shown in the video*.

Table 2. Average error for each symbol trained using the real
robot. The error is multiplied by 10~2

Demos Corrections Corrections
(COACH) (more Demos)
Symbol %o %o
Error Error Decreased | Error  Decreased
error error
a 1.483 0.158 89.35 1.151 22.45
c 0.842 0.115 86.34 0.401 52.38
I 0.284  0.096 66.20 0.182 36.62
m 1.287  0.127 90.13 0.967 24.86
P 0.174  0.109 37.36 0.159 8.62
S 1.206  0.216 82.09 0.796 34.00
Effort of the teachers during training
— Real Arm
20 i
15
c
2
v
G 10
]
5

1 1.5 2 25 3 35 4 4.5 5
Execution Episodes

Figure 12. Average of the corrections advised by the teachers
for correcting the letters.

Figure 12 depicts the evolution of the amount of
corrections advised by the teachers during the learning
process. Every event of pressing a keyboard to suggest a
change in the trajectory is counted as a correction. The results
show that in general the evolution of the corrections is similar
in both the simulated and the real arm experiments. Most of
the 70% of the corrections are given in the first and second
episodes, wherein above 90% of the policy improvement is
obtained.

6.1.2 Experiments of Transfer Learning for Policy Reuse
with a Simulated Arm In policy reuse, the user can provide
corrections to a primitive whenever a task is changed, or
when the task has to be performed in a new environment.
There can be cases in which recording demonstrations can
be complicated due to different reasons, e.g., 1) the absence
of an expert user in the task, who is able to provide high-
quality demonstrations that lead to a policy with acceptable
performance; 2) when the final user does not have access
to an interface to provide new demonstrations like wearable

sensors or complex vision systems, 3) when Kinesthetic

thttps://youtu.be/ptslNzZdum2s?t=67
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Figure 13. Initial trajectory for the transfer learning process:
from “z” to “2”.

teaching is not possible, since it is constrained to robots
with physical dimensions that a human teacher can handle.
For some of those cases the knowledge already represented
by the primitive can be reused, then the user only needs to
execute local modifications for the points of the trajectory
that need to be fixed for the new conditions. This previous
discussion motivates the evaluation approach of policy reuse
that is presented after the results of policy refinement with a

simulated robotic arm.

Here, users had to correct and improve a trajectory to
reduce the error between the path printed by the simulated
arm and the reference symbol taken as ground truth. In
contrast to the previous experiments of policy refinement,
in this case, the initial policy corresponds to a symbol that
is different from the desired ground truth, resulting in larger

initial errors.

Two symbols were explored for evaluating COACH for

“ th)

policy reuse. First a primitive for the letter was used as
initial policy for the task of drawing a “2”. The second was a

“V” used for drawing an “U”.

In Figure 13, the left-hand side shows the reference
letter (blue) used for recording the demonstrations for the
initial policy as well as the final policy (red) which was
subsequently obtained through the corrective process with
COACH. The right-hand side shows the same final policy
for the symbol “z” (red), which is used as the initial policy

for learning the symbol “2”, and its baseline (blue).

In this experiment the user has to provide the corrective
feedback during 10 episodes of the path execution. Figure 14
shows the evolution of the error through the episodes of
correction during policy execution. Before the correction
of the trajectories, the average error was 0.1717. Unlike
in the policy refinement experiments, in this case at the
first episode, the users advised large changes of the policy
decreased the initial error by about 90%. By the fourth
episode, the corrections obtained a 99% error reduction.

Moreover, it is possible to observe that by the third
episode of corrections, the error was reduced to a level lower

than the one obtained by a policy derived from datasets of
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Figure 14. Policy reuse, average error for learning symbols.

Figure 15. Trajectory correction progress for policy reuse:
Learned Primitive (red), symbol of reference (blue). a) Policy
without corrections, b) after 1 episode of corrections, c) after 5
episodes, d) after 10 episodes.

five demonstrations; by the fifth episode, the percentage of
error reduction was around 68%, also with respect to the
policy obtained from demonstrations, which is a similar error
obtained in the experiments of policy refinement. Figure 15
depicts the progress of the shape drawn for the symbol “U”,

where the initial policy is a “V”.

6.2 Learning with Simultaneous Corrective
Advice and Policy Search

So far, trajectories were optimized purely by human
feedback with COACH. In this section, we validate
the combination of PS with the human-guidance-based
exploration using COACH in well-known problems in
simulation and with a real robot.

In simulation, experiments were carried out using an
arm with varying degrees-of-freedom in a reaching via-
point task. In a second set of experiments, the “ball in
the cup” task was learned using a real robot. In both

tasks, we compared the proposed interactive PS strategy



14

The International Journal of Robotics Research XX(X)

with a standard PS algorithm in terms of the convergence
rate and final performance of the policies. Although the
proposed hybrid method can be implemented with different
PS algorithms, in this experimental procedure both the
standard and the hybrid PS are based on PI?> (Theodorou,
Buchli, and Schaal 2010).

6.2.1
The first set of experiments for the validation of the hybrid

Learning Multi-DoF Via-Point Movement Tasks

approach is carried out by replicating the experiments
intended to compare PS algorithms in (Theodorou, Buchli,
and Schaal 2010), and that has been repeated in (Stulp
and Sigaud 2012; Stulp and Sigaud 2013). The experiment
consisted of learning robot arm reaching movements (similar
to human reaching movements) with a total duration of
0.5 seconds. The task has the condition of reaching a
specific via-point at ¢ = 0.3s, which is an approximation
to hitting movements, because they require time-space
synchronization.

The learning task is evaluated in four different cases: first,
with a one-dimensional moving point (1 DoF); the next three
cases are with planar arms of 2, 10, and 50 degrees-of-
freedom (DoF). The policies are represented with DMPs,
that compute the actions in the joint space for the multi-DoF
tasks. The experiments were executed first with the original
PS algorithm PI?, and followed by our hybrid approach
combining PS and the COACH variation for policies defined
in the joint and Cartesian space. Five users between 23
and 30 years old participated in these experiments, two
participants were engineers while the others did not have
a technical background. For every explored case, 20 runs
of 500 roll-outs were executed for each of the algorithms.
The obtained results are averaged and presented with their
standard deviation.

1 DoF YVia-Point Task: In this task the initial position of
the movement is 4o = 0, and the DMP has the goal atractor
g =1 in order to finish the movement with 4500 ~ 1.
The cost function is 7, = 0 for all time steps except in
t = 300ms, as shown in (7), where G is the via-point set
to G = 0.25.

r300ms = 108(G — Ys300ms)? @)

When the user participates in the learning process, s/he
observes the movement execution and advises the binary
correction with a keyboard, similarly to the interaction in
the experiments of learning to write letters, but only using
2 keys.

In Figure 16 the evolution of the cost function through
the roll-outs execution is shown. The human feedback

<107 1 DoF

55 — Interactive PS| |

"

4] 100 200 300 400 500
Number of Roll-Outs

Figure 16. Learning Curve of the 1 DoF via-point movement
task. Average and + 1 standard deviation of 20 runs.

supporting the PS improvement makes a significant
difference regarding the original PS algorithm. The
convergence time is reduced by one order of magnitude,
the interactive PS method is about 83% faster than the
conventional PS. Moreover, it is possible to see that the
variance of the cost function is decreased with the human

guidance.

Multi-DoF Via-Point Tasks: In these cases of simulated
planar arms, the initial position is a = 0 for all the joint
angles, it sets a robot pose that is a straight line parallel
to the horizontal axis. The goal attractor x4,4; results in a
semicircle configuration, as shown in Figure 17, where the
end effector of a 10 DoF arm touches the y axis. The end
effector is moving in the 2-D space, and has to pass through
the via-point G = (0.5,0.5).

Figure 17 a) shows the trajectory of the arm with the initial
policy of the learning process. In part b) the end effector is
already passing through the via point.

The objective of the cost function is to reduce the distance
between the end effector and the via-point at ¢ = 300ms.
Additionally, it also tries to reduce joints accelerations,
giving more priority to the joints that are closer to the
“shoulder” of the arm, with D the number of DoF of the

robotic arm, as shown in (8).

re = 10%6(t — 300ms) - ((z; — 0.5)* + (y; — 0.5)%)

SP (D+1—d)(ias)? ®
+ D
Zd:l(D + 1 - d)

During the interactive learning process, the user advises
the corrections with binary corrections in both axes, as it was

done for correcting the letters in the previous subsection. In
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Figure 17. “Stroboscopic” visualization of the 10 DoF planar
robot arm movement, a) simply towards the goal, b) through the
via-point (green/red dot).

previous works these experiments have been carried out for
learning policies in the joint space domain, nevertheless, in
this paper we approach the problem both in the Cartesian and
the joint domain.

The learning curves in Figure 18-20 show the improve-
ment achieved when PS considers the human corrective
feedback. The general trend shown in the curves is that
the hybrid agents converge faster than standard PS. In the
cases of 10 and 50 DoF, the standard PS learns faster in the
Cartesian domain than in the joint space due to the smaller
search space. In contrast, the interactive PS learns faster
when learning policies in joint space compared to policies

represented in the end effector domain.

Since the original problem is only explored with policies
in the joint space, and also because the best obtained policies
are in that domain, below, the rest of the analysis is only
focused on the comparison between standard and interactive
PS for learning policies in joint space.

For the task with the 2 DoF arm the interactive PS
decreases the initial cost by 95% within the first 50 roll-outs,
and then maintains a slight rate of improvement, reaching
97.9% by the 500-th trial. In contrast, the conventional
PS attains the 95% of cost reduction approximately after
210 trials, i.e., it is 4 times slower than the interactive PS.
However, the conventional PS keeps the error reduction,
and outperforms the performance of the interactive PS after

108 Arm: 2 DoF
T T T
12f —PS {joint space) 1
—— Interactive PS (joint space)
— — PS5 (end effector space)
10} Interactive PS (end effector space)|

4] 100 200 300 400 500
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Figure 18. Learning Curve of the 2 DoF via-point movement
task. Average and + 1 standard deviation of 20 runs.
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Figure 19. Learning Curve of the 10 DoF via-point movement
task. Average and + 1 standard deviation of 20 runs.

280 episodes, reaching a total reduction of 99.2% with 500
episodes.

In the experiments with the 10 DoF arm, results are
similar, but with a bigger difference between the cost of both
algorithms. The 95% reduction is obtained during the first 30
trials with the interactive PS, whereas the conventional PS is
11 times slower for achieving that performance, and after 500
roll-outs reaches the curve of the interactive PS.

For the last case with 50 DoF, again the difference is
increased drastically, as 500 roll-outs are not enough for the
PS agent to converge in this problem. Then, at the end of
the learning process, the PS agent only achieved a 86.9%
decrease of the initial cost. On the other hand, the interactive
PS achieved a 95% reduction by approximately 25 episodes
and converged completely after the 60-th.

In the previously presented results, the convergence of PS

is affected when the number of DoF is increased, due to the
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Figure 20. Learning Curve of the 50 DoF via-point movement
task. Average and + 1 standard deviation of 20 runs.

curse of dimensionality. But the convergence of the proposed
interactive PS method shows a counterintuitive trend after the
increase of DoFs. Indeed, the fastest convergence obtained
with the human feedback is in the case of the arm with
50 DoF. The reason behind this effect has to do with the
correspondence problem between the corrective advice in
the effector domain, that is mapped to the joint space,
where the policy is defined. When the human teacher
advises a correction to the 2 DoF arm, in several cases the
solution found by the IK could be a joint configuration very
different from the previous one, or simply it cannot find a
proper solution that matches with the end effector position
correction.

These problems cause policy updates that do not match
with the user intention, therefore the teacher’s correction
may harm the policy from time to time. Nevertheless, when
the task has more DoF this problem diminishes. The more
redundant is the arm is, the easier it is to shape the end
effector trajectory with corrective advice. Although for the
case of the 2 DoF arm the corrective advice does not work
perfectly, still the PS benefits strongly from the human
guidance and reduces the convergence time by 76% when
compared to the conventional PS.

As in the experiments of learning to write symbols, for
this case it is also presented the amount of corrections
advised during the episodes in Figure 21. The curves show
that the users advised almost 2 corrections per episode at
the beginning, which is extremely way less information
than the needed to demonstrate the complete trajectory,
and also easier for non-expert users, who probably can
not successfully demonstrate accurate movements at this
speed. There is a correlation between the reduction of the

corrections and the reduction of the cost in the learning
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Figure 21. Average of the corrections advised by the teachers
for correcting the Multi-DoF Via-Point movements.

curves, this is because the users decrease the frequency of
the corrections when the performance is higher, for instance
with the arm of 50 DoF, the learning curves in Figure 20 are
the fastest, whereas in Figure 21 it is possible to see that it
needs the least amount of corrections. The results show the
potential of the proposed method for learning policies that
need to synchronize movements in time and space based on

RL and very few of this kind of binary coarse corrections.

6.2.2 ball-in-a-cup The ball-in-a-cup is a challenging
children’s game that requires accurate skills in a relatively
fast movement. The game uses a toy composed of a ball
attached to a cup with a string. The cup is held with the hand
of the player, or attached to the end effector of the robot in
this case. Initially, the ball is hanging steady below the cup,
and the arm has to move the cup fast enough to launch the
ball high in the air to catch it during the landing.

A reward function that represents the task objective would
be one that punishes a failed trial, and rewards when the ball
falls into the cup. However, such function is not informative
for efficient (or even feasible) learning in a reinforcement
learning setting. This problem was approached in (Kober and
Peters 2009) with a more complex function of the form

exp(—a(r. — )% — alye —yp)?) ift =t.,

T =
0 otherwise,

©)

using the PS algorithm PoWER on a real robotic arm Barrett
WAM.

In the reward function above, the ball and cup positions

are [y, Yp, 2p] and [Z¢, Ye, ¢, respectively. The time ¢ = ¢,

is the moment when the ball passes the rim of the cup with

downward direction, for all the other time steps t # t. the
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function is r; = 0. This reward function was used by the PS
method to improve an initial policy obtained from a human
demonstration.

In this work, we validate the proposed interactive PS
method with this problem using a 7 DoF KUKA lightweight
arm, and an OptiTrack system which tracks the position of
the ball and the cup, for computing the reward function.
Nevertheless, there are two important differences with
respect to the work of Kober and Peters (2009). First,
here the policy computes the trajectory of the end-effector
instead of computing actions in the joint space; secondly, we
consider not only to improve policies learned from human
demonstrations, but also to learn the policies from scratch,
therefore the reward function of (9) is complemented in order
to make it more informative.

When the arm tosses the ball with a height lower than the
cup (9) is completely uninformative as it always results in a
zero. In order to lead the policy to a behavior wherein (9) is
applicable, we propose to complement this function with a
term that rewards the height obtained in those cases.

Then, when the ball does not reach the height of the cup,
the term (10) is applied:

Zh — Zc
’I"th =
ls + 1.

(10)

With [. and [ denoting the length of the cup and the string
respectively, and ¢ = t;, is the moment when the ball reaches
the maximum height. The sum of /. and [, is the distance
between the ball and the rim of the cup when the ball is
hanging motionless.

With this extension, the “ball-in-a-cup” task can be
considered a composition of the sub-task “swinging the ball”
with the objective of tossing the ball higher than the cup,
followed by the sub-task “catching the ball” that aims to
move the arm for intercepting the ball with the cup. For the
computations of the learning algorithms, the reward function
is transformed into a cost function multiplying it by -1.

Different from previous works that use DMPs for this
problem, we opted to represent the policy with the ProMP
form of (4), like in the experiments of Section 6.1, since the
convergence to goal attractors is not a necessary property
for this task. Again PI? is the base PS algorithm for these
experiments.

In the experimental procedure, for the learning processes,
cups of two different sizes are used in order to change the
difficulty of the task. The big cup (approximately twice
the diameter of the ball) is attached to the robot arm via
a stick, see Figure 1. The big cup also contains the small

cup (diameter approximately 1.3 times the ball’s diameter).

During learning processes, the human teacher is sitting in
front of the robot with a perspective similar to Figure 1.

Most of the validation experiments are carried out with
the big cup. Standard PS is compared to learning with
human feedback in the interactive PS approach, along with
the pure COACH method, executing ten runs for each
approach. In this experiment, two participants performed as
teachers, one was an author of this paper, and the other
was a person without technical experience. Since the learned
policy computes actions in the end effector domain, the
two interactive methods are based on the complete COACH
approach for training motor primitives in the Cartesian space.
A keyboard is used for advising the corrections by the user.

The first set of experiments starts with a policy derived
from a kinesthetic demonstration and using the big cup.
The learning curves presented in Figure 22 show the big
difference between learning with PS and the interactive
methods. PS achieves policies that catch the ball with the cup
around the 60-th trial, and keep improving until convergence
after 90 trials. In contrast, with COACH and the interactive
PS the task is achieved after 10 and 15 episodes respectively.
With COACH the improvement stops very soon, because
when the human teacher observes a successful policy, s/he
reduces the effort for enhancing it, due to the fact that it is not
very evident and/or necessary. For human teachers is hard to
infer corrections when sub-optimal policies are close to the
optimal.

On the other hand, at the beginning, the interactive PS is
slightly slower than pure COACH due to the influence of
some of the first roll-outs in the update process. However,
with the hybrid method, the improvement continues until
the 70-th episode reaching the best average performance.
This improvement results from both sources of feedback,
especially from the reward function.

The learning curve of the PS reaches and outperforms the
cost obtained with COACH within 75-80 trials, i.e., it needs
4 times more trials. However, within 100 trials, PS does not
attain the performance obtained by interactive PS.

For a second set of experiments, a more challenging
scenario is used for testing the learning algorithms, wherein
a previous demonstration is not given by the human teacher
(learning from scratch). Therefore, a policy that does not
request any movement is set at the beginning of the learning
process.

Since the arm is not able to toss the ball to the necessary
height in one shot, the robot needs to learn the “swinging
the ball” sub-task, so that it oscillates like a pendulum and
obtains enough momentum. In that first part of the learning

process, the term (10) of the reward function plays an
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0.2 Learning from an initial demonstration
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Number of Roll-Outs
Figure 22. Convergence curves for learning “ball-in-a-cup” with

an initial demonstration. Average and + 1 standard deviation of
20 runs.

important role. When the policy evolves maximizing (10),

it continues learning to catch the ball with the cup using (9).

The results of this experiments are shown in Figure 23.
It depicts that these interactive methods based on vague
corrective advice are more robust to the initial policy than
standard PS. Both learning curves of the corrective advice
based methods are basically the same of the experiments
of learning with an initial demonstration, but delayed
approximately 5 trials due to the episodes intended to learn
to swing the ball.

The convergence of PS is very sensitive to the initial
policy. In this scenario PS takes about 170 episodes to
attain successful policies. The very beginning of the learning
process is very slow because the random movements tend to
diminish the effect of the previous ones, even considering
that the algorithm implementations of this work use state
dependent exploration as in (Kober and Peters 2009;
Theodorou, Buchli, and Schaal 2010) for avoiding high-

frequency actions.

Finally, interactive PS keeps optimizing the policy when
the improvement is not evident for the human teachers,
outperforming the outcomes obtained with only COACH
after 30 trials.

Figure 24 shows the amount of corrections advised during
the rollouts. Similarly to the conclusion obtained from the
experiments of the Multi-DoF via-point movements, the
faster is the cost reduction, the less amount of advised
corrections. In this case using only COACH requires less
corrections than the combined method, this is because the
PS updating process makes the progress slightly slower, as
shown in Figure 22 and 23.

Learning from scratch

1 1
e
0.8 1 Interactive PS

anly COACH

0.6

0.2

-0.2

-0.4

-0.6

-0.8

4] 20 40 60 80 100
Number of Roll-Outs

Figure 23. Convergence curves for learning “ball-in-a-cup”
from scratch. Average and + 1 standard deviation of 20 runs.
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Corrections
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Figure 24. Average of the corrections advised by the teachers
for correcting the "ball-in-a-cup” movements.

The set-up with the small cup is used to compare
the interactive algorithms while learning from scratch. In
Figure 25 the means of the learning curves based on human
feedback presented in Figure 23 are taken as a reference to
be compared with the experiments of learning using the small
cup.

Since the cost function is the same, which basically takes
into account the distance of the ball to the center of the
cup, the size of the cup would not affect the cost evolution
with an algorithm that is only based on the computed reward
for updating the policy, like the PS. But in the cases of the
methods with human feedback, it is possible to see that the
cost is decreased faster in the set-up with the small cup.

The previous counter-intuitive observation is due to
problems with the human perception, because for a teacher
it is hard to know whether the ball is falling into the cup

exactly through its center or not. The users may not be able to



Celemin et al.

19

Learning from scratch

06 -
—— Interactive PS
065 - only COACH
====|nteractive PS "small cup"
only COACH "small cup"
0.7 1
0.75
i
o -0.8
&)
0.85
-0.9
0.95
A . . . . .
0 20 40 60 a0 100

Number of Roll-Outs

Figure 25. Comparison of Learning curves for the
“pball-in-a-cup” task, in the scenario of learning from scratch
using the big and small cups.

estimate depth accurately, so when teachers are in front of the
robot, it is harder to make the ball to pass through the x and
y center of the big cup. With the smaller cup, the rim of the
cup itself is a visual aid. Then, when the ball hits the rim, the
user infers the correction based on that visual information.
Therefore, when the policy makes the ball to fall into the cup
without touching the rim, it is already crossing its center or
very close to it.

With the small cup, the users could track the progress
of the policy better, so Figure 25 shows that users were
engaged with the learning process during more trials, e.g.,
when learning with only COACH and the big cup, the policy
improvement stopped at rollout 25, whereas with the small
cup they kept correcting during 5 more rollouts.

In the previous experiments, the last part of the
improvement with interactive PS is mostly based on the
reward function. However, this last experiment with the small
cup shows that in cases wherein the human perception is
enough to obtain insights about how good is a policy when is
close to the optimum (rarely), with only COACH is possible
to achieve performances like the obtained with the interactive
PS. In the link® a video shows the learning process of the task

with the proposed learning method.

7 Conclusions

In this paper, we have proposed the use of human
corrective feedback within the framework of Policy
Search (PS) methods for learning movement primitives.
First,

adapting parametrized trajectories during time execution was

the application of pure corrective advice for

presented as a simple extension of the framework COACH.

Secondly, this extension was integrated in the exploration
stage of standard PS algorithms in order to combine both
sources of improvement: 1) Random exploration, and 2)
Human corrections.

Schemes based on pure human corrective advice showed
that this kind of relative corrections with vague binary
signals provide human teachers with the capability to modify
trajectories while a robot executes it. The experiment of
writing symbols showed that users can obtain very good
shapes for the symbols with corrective feedback. The users
obtained better policies using corrective advice than the ones
obtained solely from demonstrations, which means that the
application of corrective advice renders it less necessary to
have users with high level of expertise in the task and using
human-robot interfaces.

The validation of the proposed interactive PS showed
outstanding results in two well known benchmark problems
with simulated and real robots. The learning curves showed
that the proposed method speeds up the convergence of PS
from 4 to more than 40 times. Human feedback is extremely
powerful to accelerate the learning process at the beginning,
whereas the cost function has an important influence for
performing fine tuning when suboptimal policies have a
good performance, but the users’ perception is not good to
determine how can be obtained more improvement through
corrections, e.g., when the policy already accomplishes the
task but still the energy used can be reduced.

The validation of the proposed hybrid learning scheme
showed that it is possible to learn complex skills such
as the ones required to solve the ball-in-a-cup task,
without previous demonstrations. This method allows to start
learning processes from scratch, i.e., initial static policies,
that incrementally receive the user’s corrective advice. Little
by little, the human teachers guide the robot to policies that
satisfy their understanding about the fulfillment of the task.
Also, the results show that it is possible to learn this skill
based only on human corrections.

Moreover, the proposed strategy to cope with the
correspondence problem — matching between the human
feedback given in the task domain, and the policy in the
joint space — has shown that the method scales to high
dimensionality problems, actually, in the problems of multi-
DoF planar arms, the best results obtained are with the arm
of highest amount of DoF.

The corrective feedback used in COACH is limited
to applications in which the teacher can observe the

world, evaluate, and advise corrections according to its

$https://youtu.be/ptslNzdum2s?t=129
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understanding of the task, and the dynamics of the
environment. For problems with fast and complex transitions
in high dimensional action spaces, the user would not always
be able to give appropriate advice e.g., learning to control a
drone, then, the learning curve of our proposed Interactive PS
would be similar to the one of pure RL, since few feedback
signals would be given by the teacher. Therefore there is
still the need to extend these methods to approaches that
transform the problems to scenarios wherein the teacher can
advise, for instance, providing feedback in offline playback,
or simultaneous policy and model learning for carrying out
part of the training in simulation.

More future work is intended to extend this learning
scheme for policies parameterized with Deep Neural
Networks, so the advantages of the method proposed in this
work can be obtained for learning End-to-End policies. Also,
further research will consider to learn reward functions from
human corrective feedback, in order to apply RL in situations
wherein there is no reward function available, and it is not

possible to record expert demonstrations.
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