
Phase Portraits as Movement Primitives for Fast Humanoid Robot
Control

Guilherme Maeda1, Okan Koc2, Jun Morimoto1∗

g.maeda@atr.jp, okan.koc@tuebingen.mpg.de, xmorimo@atrj.jp

1ATR Computational Neuroscience Laboratories. Kyoto, Japan

2Max Planck Institute. Tübingen, Germany

Abstract

Currently, usual approaches for fast robot control are largely reliant on solving online optimal control

problems. Such methods are known to be computationally intensive and sensitive to model accuracy. On

the other hand, animals plan complex motor actions not only fast but seemingly with little effort even

on unseen tasks. This natural sense of time and coordination motivates us to approach robot control

from a motor skill learning perspective to design fast and computationally light controllers that can be

learned autonomously by the robot under mild modeling assumptions. This article introduces Phase

Portrait Movement Primitives (PPMP), a primitive that predicts dynamics on a low dimensional phase

space which in turn is used to govern the high dimensional kinematics of the task. The stark difference

with other primitive formulations is a built-in mechanism for phase prediction in the form of coupled

oscillators that replaces model-based state estimators such as Kalman filters. The policy is trained by

optimizing the parameters of the oscillators whose output is connected to a kinematic distribution in the

form of a phase portrait. The drastic reduction in dimensionality allows us to efficiently train and execute

PPMPs on a real human-sized, dual-arm humanoid upper body on a task involving 20 degrees-of-freedom.

We demonstrate PPMPs in interactions requiring fast reactions times while generating anticipative pose

adaptation in both discrete and cyclic tasks.

Keywords: Imitation learning, reinforcement learning, movement primitives, phase estimation, coupled

oscillators.

1. Introduction

Humans react to changes in the environment by adapting and coordinating complex motor actions grace-

fully and skillfully. Consider motor skills that basketball players exhibit when passing and receiving a

ball as shown in Figure 1. They naturally coordinate the position of the hands according to the progress

of the ball trajectory, quickly adapting both in time and space. Yet, in contrast to the heavy online

optimization typically found in robot control (e.g. [1, 2, 3, 4]), no conscious effort seems to be spent on

either the ball prediction or the trajectory planning of the hands. This natural agility could be in part

∗Corresponding author: xmorimo@atr.jp. ATR. Department of Brain Robot Interface. 2-2-2 Hikaridai, Seika-cho,
Soraku-gun, Kyoto 619-0288, Japan

Preprint submitted to Journal of LATEX Templates December 10, 2019

ar
X

iv
:1

91
2.

03
53

5v
1

 [
cs

.R
O

]
 7

 D
ec

 2
01

9

Figure 1: Playing with a ball. Humans are naturally endowed with the ability to estimate the time-to-contact while
coordinating multiple degrees of freedom even without knowing the exact dynamics of the flight and contact forces. To
endow robots with such capabilities, this article introduces Phase Portrait Movement Primitives (PPMPs). A PPMP is
capable of estimating the future temporal states of an interaction by using coupled oscillators as a dynamical model in
phase space. By using policy search, the robot learns to combine the estimated phase with the high-dimensional kinematics
of the task represented as a phase portrait.

because, from an early age, humans seem to develop a sense of timing[5] that proves essential in fast motor

actions. Moreover, the fact that we continuously anticipate the interaction by adapting our pose—e.g.

when someone tricks us by rocking a ball towards us, pretending a pass but not doing it—indicates that

this sense of timing is given by some predictive mechanism that makes us anticipate poses according to

the expected progress of the interaction.

Animal agility also seems to be related to the existence of motor primitives as internal models learned

and improved from experience. These primitives provide a mapping from sensory signals to motor com-

mands [6, 7, 8] coordinating the relevant degrees-of-freedom in the system and can be quickly queried to

achieve fast adaptation. In robotics, researchers have for many years tried to create the corresponding

counterparts as movement primitives acquired via imitation[9]. While the search space decreases con-

siderably by using the templates provided by primitives, its reliance on future state prediction is still a

challenge for fast adaptation. For example, Kober et al. [10] designed a specialized Kalman filter to pre-

dict the future states of an incoming ball in robotic table tennis. That work used Dynamical Movement

Primitives (DMPs) [11], a representation widely used within the robot learning community. A goal of our

method is to incorporate a predictive sense of timing (such as the time-of-contact of a flying object) as

an intrinsic part of the primitive without relying on the detailed physics models required by traditional

state estimators.

A fundamental requirement in tasks involving fast dynamics is that robot control commands must be

computed extremely fast, often at the order of tens of Hertz, while accounting for the future states of the

interaction. In Figure 2, this difficulty is cartooned by a robot that when observing the flight of a ball at

time t0, must advance its progress as shown at time t1 such that it can compensate for the many sources

of delays (inertia, torque limits, friction, backlash, etc.) when preparing for the landing of the ball at t2.

Here, we refer to the robot’s and ball’s progresses by their phases, φrobot and φtarget, respectively. Thus,

a positive phase shift φrobot > φtarget indicates that the robot is acting in an anticipative manner.

2

Task progress

Phase controller

Figure 2: Temporal prediction and adaptation for ball catching. An illustration of a motivating problem where
a robot must continuously observe the flight of a ball and adapt its phase φrobot to the ball phase φtarget such that a
successful catching is possible. Pure reactive feedback tracking on the ball position can not account for the fact that the
robot must advance its phase, as shown at time t1, to preemptively prepare for the ball landing at time t2. We use the
concept of coupled oscillators and let the robot learn a policy that modulates the (nonlinear) impedance between these
two oscillators. At runtime, the phase oscillator can assign the robot to future phase states by using a positive phase shift
(α = φrobot − φtarget > 0).

Using this illustrated case as motivation, in the broadest possible terms, two principal directions to

solve this problem are to use models that can be exploited by online optimization or to rely on trial-and-

error under the framework of model-free reinforcement learning.

Within the class of methods based on models and online optimization, for many years, Model Predic-

tive Control (MPC) has been considered the gold standard in fields such as chemical processes and more

recently in robotics [12, 2, 4]. MPC is characterized by the computation of a look-ahead trajectory (whose

length is defined by the horizon) which starts at the current state of the task. This trajectory is executed

partially until a new look-ahead trajectory is ready to replace the previous one. By constantly refreshing

the reference trajectory, the effects of disturbances and modeling errors are greatly reduced as they are

continuously absorbed within the states used to generate the subsequent trajectory. As a consequence,

MPC—and online optimal control, in general—not only relies upon the designer’s domain knowledge for

modeling but also demands fast optimization routines and powerful computing (e.g. [1, 4, 13]). This

reliance on models and computational requirements makes such approaches less suited to fulfill the vision

of intelligent robots capable of learning tasks autonomously.

On the other spectrum, reinforcement learning is an extremely general approach for robotic au-

tonomous learning[14]. However, the lack of model information leads to an unrealistic amount of experi-

ence to be acquired via trial-and-error; reducing its practicality to low dimensional problems. Here, we

propose a middle-ground solution in terms of model requirements which we will loosely refer to as semi-

model-free. We implement and investigate whether the temporal dimension of the task can be sufficiently

predicted by a general dynamical model borrowed from the locomotion literature [15, 16]. Under the

manipulation interpretation, the assumption is that the timing of the manipulation obeys the dynamics

of two oscillators—one for the robot, another for the environment—coupled by an impedance feedback

law (details in the next section). The spatial dimension is represented by a kinematic model valid around

the vicinity of demonstrations. These temporal and spatial representations do not rely on domain knowl-

edge or parameter system identification required by model-based methods. Moreover, the dimensionality

decreases to a degree that is amenable to the use of policy search reinforcement learning methods.

The main contribution of this article is to propose a control method where a mechanism for fast

3

phase estimation is an intrinsic part of the movement primitive. As the primitive is represented as a

phase portrait we name the method Phase Portrait Movement Primitives (PPMP). This close connection

between phase estimation and primitives allows for first solving the timing of the interaction in the phase

space, subsequently reducing spatial coordination to a kinematic problem. The benefit is that at runtime,

PPMPs have negligible computation load while allowing for fast generation of predictive actions. PPMP

is a general method devised to support the vision of future robots capable of learning tasks completely

autonomously. This article empirically evaluates the sufficiency of this representation and its efficiency

for reinforcement learning by applying it on a variety of tasks; from dynamic manipulation of a flying

ball, to handovers with a human, to footstep placing for walking. Our preliminary investigations on

the phase oscillator dynamics which led to the PPMP proposed in this article first appeared as a short

conference paper [17]. This article has a mature view of the method, in which we more deeply analyze

its fundamental components while guiding the reader through the synthesis of PPMPs. In addition to

formalizing the concept of phase portraits for the first time, this article also extends experimental cases

significantly, comparing and discussing the parallels with other primitive formulations.

2. Coupled Oscillators and Phase Portraits

This section introduces the main components of PPMPs. A phase estimator in the form of coupled

phase oscillators is used for estimating the timing of the interaction while a probabilistic phase portrait

as a distribution of demonstrated trajectories is used for kinematic coordination. Because the dynamic

link between phase oscillators and phase portraits are not observable during humans demonstrations,

the last step of PPMP consists of merging the oscillators and the phase portrait as a single policy via

reinforcement learning (RL).

2.1. Timing the Dynamics of Interactions via Coupled Oscillator

We revisit a locomotion model based on coupled oscillators [15, 16] and reframe it as a predictive

model to estimate timing in manipulation tasks. If properly tuned, the oscillators allow the robot to

anticipate actions as a function of the evolution of another agent. The illustration at the right in Figure 2

shows the concept of the phase mechanism adopted in this work as two metronomes coupled via a stiffness

K and a phase difference α. In feedback terms, the stiffness is a proportional controller whose goal is to

decrease the phase tracking error while the phase shift acts as a set point offset. The target oscillator’s

state φtarget is a measure of the progress of the interaction with the environment. The second oscillator

provides the phase state of the robot φrobot, whose value is computed by integrating the dynamics of the

coupling

φ̇robot = ω +K sin(φtarget − φrobot + α), (1)

where ω is the natural frequency of the system, that is, the velocity at which the robot would move if no

correction was applied. An important insight is that while the reactive nature of the coupled oscillators

is the essence of the simplicity and fast estimations, the effect of its output in the control task is, in fact,

predictive. Note from (1) that the oscillators can assign the robot to future phase states in relation to the

target state (time t1 in Figure 2) by using a positive phase shift α = φrobot−φtarget > 0. The problem is

then to learn what is the optimal value of this phase shift and also the stiffness in which this shift should

be tracked according to the input φtarget.

4

2.2. Kinematic Coordination via Probabilistic Phase Portrait

The phase is related to the temporal dimension of the task—represented by the horizontal axis in

Figure 2—and does not contain any spatial or kinematic information such as the joint configuration of

the robot. Here, we describe how the joint positions of the agent can be learned and computed as a

function of the target’s position via inference. A probabilistic approach for fast robot pose adaptation

has two main benefits. First, by assuming a normal distribution, a closed-form solution can be used to

instantaneously infer robot poses given observed context positions. Second, the phase portrait can be

designed from demonstrations, rendering a methodology that requires little domain knowledge. As an

imitation learning approach, the idea is to obtain a few variations of trajectory pairs of duration T of

robot joint angles qdemo
1:T and the target movements usually observed in Cartesian space (e.g. via motion

capture) xdemo
1:T from multiple demonstrations. Each paired trajectory is assumed to be a sample from a

joint distribution (q ,x)1:T ∼ P (q,x)1:T . Assuming normal distributions, at each time step t ∈ {1, .., T}
we can write

P (q,x)t = N ({µq,x}t, {Σq,x}t), (2)

where

{µq,x}t =
[
{µq}t, {µx}t

]>
= mean({(q′,x′)1:N}t) and (3)

{Σq,x}t =

[
{Σqq}t {Σqx}t
{Σxq}t {Σxx}t

]
= cov({(q′,x′)1:N}t). (4)

At each instant t, a target observation xt is made and the corresponding joint configuration of the

robot is computed as a conditional distribution

P (q|x)t = N ({µq|x}t, {Σq|x}t), (5)

with

µq|x = µq + ΣqxΣ
−1
xx (x − µx)

Σq|x = Σqq −ΣqxΣ
−1
xxΣxq,

(6)

where the subscript t was dropped.

In practice, many tasks cannot be demonstrated directly using a robot either because most robots are

not backdriveable (no kinesthetic teaching capability) or because the task is too fast to be executed while

moving a robotic arm (like catching a flying ball). As shown in Figure 3(a), a more natural approach is to

observe a human executing the task while interacting with a target where paired end-effector and target

trajectories are recorded. Later, the robot trajectory is computed via inverse kinematics qdemo
1:T ← xend-eff.

1:T

as shown in Figure 3(b).

Figure 3(c) shows the sequence of joint distributions (2) in time-domain. The plane cutting the

trajectories in half is used to indicate the difference between cyclic and single-stroke tasks. In the former,

the distributions return close to the initial state, and in the latter, only the first half of the distributions

exist. PPMPs apply seamlessly in both cases.

5

(a) Observation via motion capture (b) Inverse kinematics (d) Phase-indexed distributions (c) Time-indexed distributions

Figure 3: Representing Kinematics as a Probabilistic Phase Portraits. The Phase Portrait Movement Primitives
(PPMP) consists of a sequence of joint distributions that correlates demonstrator and target positions. These joint distribu-
tions are first captured via demonstration (a) and transformed into joint angles via inverse kinematics (b). The trajectory
of distributions (c) are then laid on the phase-plane of the end-effector (xend-eff., ẋend-eff.) which can then be queried by a
phase angle φrobot. The semi-transparent plane in (c-d) shows the only distinction between cyclic and single-stroke tasks,
where in the latter case only half of the distributions are present as no path of return exists.

To connect oscillators and primitives consistently, we map the sequence of kinematic distributions

onto the phase plane of the end-effector motion such that the angle of the phase plane becomes the

input from the oscillator. This mapping is illustrated in 3(d) by using the mean value of the end-effector

trajectory to compute the phase of the robot as the angle

φrobot = φt = − arctan(ẋend-eff.
t ,xend-eff.

t), t ∈ [1, T]. (7)

This primitive is a sequence of distributions on the phase plane and can be interpreted as a probabilistic

phase portrait. At run-time, the time-based phase φt is replaced by the phase computed by the oscillator

φrobot. The idea is to use the angle φrobot output by the oscillator to retrieve P (q,x)φ from the phase

portrait. This distribution is then conditioned on the observed target to produce a set of joint angles1

q ∼ P (q|x)φ. In the single stroke case, the phase portrait only covers the first two quadrants of the phase

plane while in cyclic tasks all quadrants are covered.

2.3. Consolidating Oscillators and Phase Portraits as a Single Policy

So far, the phase estimation resulting from the dynamics of the coupled oscillators is unrelated to the

kinematics of the phase portrait. Not only the oscillators and the portraits represent different policies

(temporal and spatial) but they have been designed independently in the previous sections. One issue

to connect them is that the relation between oscillators and phase portraits cannot be observed during

the demonstration. Another issue is that we want the robot to adapt to a variety of situations for which

demonstrations are not available. Thus, it is necessary to consolidate these two components as a single

robust dynamical policy. To this end we propose the scheme in Figure 4 where the dynamics between

1Alternatively, one could retrieve xend-eff.
φ from the phase portrait and use inverse kinematics to compute a solution for

the inferred end-effector position online. In principle, the only compelling reason for doing so is when the true distribution
cannot be capture as N ({µq,x}t, {Σq,x}t).

6

Reinforcement learning

Phase estimator

()

Figure 4: Learning to combine coupled oscillators with the probabilistic phase portrait as a control policy.
The full method where the oscillator output selects a joint distribution on the phase-portrait. This distribution is then
conditioned on the target position to retrieve robot joint angles. The use of policy search RL on the parameters coupling the
oscillators allows the robot to consolidate the nonlinear synchronization between the oscillator dynamics and robot poses
as a single and consistent policy.

the coupled oscillators affect how the distributions on the phase portraits are queried as a function of the

phase of the target φtarget.

Referring to (1), the only open parameters that allow this consolidation are the coupling elements,

stiffness K and phase shift α, between oscillators. The natural frequency ω governs the velocity of the

cycle when the robot is free from external inputs. For manipulation tasks, it is natural to assume that

the robot should not move when the target does not move, thus we use ω = 0 as the default value for

all the experiments in this article. Fixed values of K and α generate a linear control law, which, except

for simple single stroke tasks, show insufficient to represent different task regimes. Thus, to allow for

nonlinear oscillator dynamics we define the coupling parameters as two functions K = K(φtarget) and

α = α(φtarget). Finding the optimal PPMP policy means finding the shapes of K(φtarget), α(φtarget)

such that a cost is minimal when the task is finished successfully.

With the exception of simple systems, this optimization is usually not suited for model-based methods

as the interaction dynamics are the result of many unknown lumped effects such as the delays in the

robot actuation, mechanism nonlinearities (e.g. friction and backlash), bi-manual asymmetric exchange

of contact forces between the hands and the manipulated object, inaccuracies of the perception system

and its delays, etc. Thus, for the general case, a gradient-free direct policy search approach [18] is better

suited. The parameters that govern the shape of the two functions K(φtarget), α(φtarget) are optimized

directly based on rewards. As usual in policy search, the optimization is done on weights as parameters

that control the amplitude of N radial-basis functions (RBFs), such that

[K(φtarget), α(φtarget)] = [Φi,1 ... Φi,N][w>K ,w
>
α], (8)

where wK ∈ RN and wα ∈ RN are weight vectors. The matrix of basis functions Φ has dimensions

7

T × N where T is the number of steps on the demonstration and N is the number of bases2. As such,

the n-th column of Φ is a RBF centered at n = (T/N) and defined over the interval [−π, π] for cyclic

tasks or [0, π] for single-stroke tasks.

The definition of the number of basis functions is usually an empirical process. Lower N values impose

smoother functions while larger values allow for functions requiring rapid transitions. In our experiments,

a typical value was N = 10. The weights can be computed by solving the normal equations (refer to [19]

chap. 3 for detailed procedure)

wK =
(
Φ>Φ

)−1
Φ>K(φtarget

−π:π)

wα =
(
Φ>Φ

)−1
Φ>α(φtarget

−π:π).
(9)

As the policy search algorithm we adopted PiBB [20] which is a black-box optimization3 algorithm

based on Pi2 [21] to search for the optimal vector w = [w>K ,w
>
α]. The updates are of the form

wnew ← wold +

R∑
r=1

[P (τr)εr], (10)

where a parameter update is done every R batches of roll-outs. The old parameters wold are updated

by using the weighted average of the exploration noise εr ∈ RN , which are sampled from a zero-mean

Gaussian distribution. The weight of each roll-out is computed with

P (τr) =
exp[−λC(yr)]∑R

r′=1 exp[−λC(yr′)]
, (11)

where C(·) is the cost of the roll-out and must be designed for the task at hand. While we motivate the

policy search as a way to find an optimal policy, an alternative interpretation is to view the optimization

as a parameter estimation problem via RL [22] since the coupling between oscillators is a parameterized

control law.

Referring to Figure 4, the execution of a roll-out consists in using the exploratory weights to retrieve

corresponding functions K(φtarget) and α(φtarget) with (8). Under continuous target observations xtarget

the target phase φtarget is computed and used as the input for the coupled oscillators, from which the

robot phase is found as

φ̇robot = ω +K(φtarget) sin(φtarget − φrobot + α(φtarget)). (12)

The phase of the robot indicates which joint distribution from the phase portrait to be used. This

distribution is conditioned on xtarget to obtain the joint configurations of the robot. This process is

repeated online during a roll-out and only requires the computation of the integral (12) and the inference

2An alternative to RBFs is to use circular features such as von Mises bases to ensure the continuity of
K(φtarget), α(φtarget) when φtarget wraps around a full cycle. We did not notice the continuity to be important as
φrobot results from the integration of a differential equation. Thus, even if the parameters are discontinuous, the phase
trajectory that results from using these parameters is smooth by construction.

3PPMPs do not require a particular policy search algorithm. In principle, it can be used with any black-box optimizer.

8

in (6). By the end of the roll-out, the cost of using this particular weight vector is then assessed. Once

the optimization is finished, the weights are fixed and a roll-out can be run repeatedly in single-stroke

cases, or the same roll-out can run indefinitely in cyclic cases.

3. Results

This section describes experimental results on a cyclic basketball pushing task using a real human-

sized upper body bi-manual humanoid comprised of 17 DoFs (seven DoFs in each arm, and three DoFs on

the waist). While the ball pushing is a cyclic task, we later show experimental evidence on the generality

of the method motivated by a single stroke task of handovers. In the ball pushing task, the ball adds

three DoFs to the task as Cartesian positions such that the PPMP encodes 20 DoFs.

3.1. Phase Portrait Movement Primitives on a Cyclic Ball Pushing Task

Motivated by the ball passing game described in the introduction, we describe experimental results

where a Phase Portrait Movement Primitive (PPMP) was learned to reproduce the skill of dynamically

receiving and passing a ball. Since the robot has a limited bandwidth to respond to the fast movements of

the ball, under a successfully trained policy, this experiment allows us to validate the anticipative action

that was motivated in Figure 2. Also, because the ball can be easily manipulated by an external agent, it

is easy to introduce large disturbances into the system to evaluate its robustness. The ball was attached

to a 1.5-meter string hanging from the ceiling such that it would sit in front of the robot when resting.

The string limited the ball’s travel range and ensured its return, facilitating the execution of roll-outs

during training. The robot task was to persistently maintain the ball on a limit cycle. To do so, the

robot had to repeatedly push the ball as if it was passing it to someone in front of it, and to smoothly

decelerate the ball to avoid bouncing during its return while also preparing for the next push.

3.1.1. PPMP Design from Motion Capture

To design the PPMP, we executed the procedure previously illustrated in Figure 3 where demon-

stration trajectories of a ball push-receive were recorded as Cartesian trajectories of T time steps for

both the hands and the ball as shown by the row of snapshots in Figure 5 (a). Markers were at-

tached to the right hand of the demonstrator and on the ball. The right hand trajectory was mir-

rored across the sagittal plane of the robot to enforce symmetrical dual-arm trajectories such that

xend-eff.
t = [(x, y, z, q)left, (x, y, z, q)right]

ᵀ ∈ R14 (q ∈ R4 is the quaternion). The plot in Figure 5 (b)

shows the recorded trajectories in the Y direction of the left hand and the ball during a full cycle of push-

ing and receiving. By comparing the amplitudes of the movements, it is noticeable that the ball had a

much larger travel range than the hands meaning that during most of the time, the task is underactuated

as ball and hands are not in contact.

The PPMP was designed using inverse kinematics (IK) to find the corresponding joint angle tra-

jectories of the robot based on the recorded human’s hand trajectories qrobot
1:T = IK(xdemo

1:T). These

joint trajectories were paired with the trajectory of the target ball (qrobot,xball)1:T . To avoid multiple

demonstrations we artificially generated perturbed simulations using the real demonstration as a nominal

trajectory, a procedure that is explained in detail in the Appendix. Figure 5 (c) shows the correspond-

ing demonstrated phases of the agent and the ball, both computed with (7). Note that we used the Y

9

Ball

Left hand

(b) Position

Ball

Left hand

(c) Phase

Y

Z

Left hand

Ball

Right hand

(d) Cartesian trajectories

(a) Demonstration

Figure 5: Demonstration of a ball pushing. (a) Demonstration of a ball push-receive task and the resulting Cartesian
trajectories (right). Note that the ball hangs from the ceiling by a rope. The trajectories along the Y direction (b) and
their phases (c).

(a) Successful pushing

(b) Failing to block

Figure 6: Full cycle with linear coupling. Using constant coupling parameters K and α the robot could push the ball
but could not block it in time during its return indicating that a linear phase predictor does not suffice to cover different
regimes of the cycle.

coordinates of the movement as it is the direction that measures the distance between the ball and the

robot, and thus describes the phase of the interaction.

3.1.2. Policy Search on the Real Robot

Our initial attempts in using constant coupling parameters rendering a linear phase predictor were

unsuccessful, an indication that a nonlinear parametrization is necessary for this task. As shown in Figure

6, while the dynamics of the coupled oscillators could be tuned to properly push the ball (upper row), the

same settings did not succeed when receiving the ball (bottom row). In fact, as results show, to forcefully

push the ball away, the robot must aggressively track the ball phase with a positive phase shift which sets

its phase to be ahead of the ball. Conversely, to softly decelerate the incoming ball and avoid bouncing,

a smooth and compliant phase tracking where the robot starts largely advanced in phase but recedes

as the ball approaches is necessary. It is important to keep in mind that although the optimization is

only on the parameters of coupled oscillators, as it was shown in Figure 4, its effect passes through the

kinematics of phase portraits, such that the RL procedure consolidates the full spatio-temporal spaces as

a single policy.

We follow the procedure of Section 2.3 to optimize the policy. Since the goal of the task was to

10

maintain the ball on a persistent limit cycle we transcribed this requirement with the cost

ct(yt) = v1

17∑
j=1

(q̈t)
2
j + v2 |ygoal − yball

t |+ v3 (0.5|yleft
t − yball

t |+ 0.5|yright
t − yball

t |). (13)

where q̈t is the joint acceleration at time step t, ygoal is a goal value set to 3 meters which encouraged the

robot to strongly push the ball far away from itself. The left and right end-effector positions are given

by yleft
t and yright

t . The last term rewards the robot for keeping its end-effectors and the ball distant

from each other, which is only possible if the robot learns to constantly push the ball away from itself.

The weights of each component {v1, v2, v3} = {10, 5,−20} were tuned by hand. Since the task is cyclic,

a roll-out was defined by its duration and its cost C was computed as the average of the instantaneous

costs

C(y1:M) =

M∑
t=1

ct(yt)/M (14)

where M is the total number of time steps during the roll-out. Each roll-out was set to last 30 seconds

allowing the robot to attempt 15 to 17 pushes per trial.

To allow for fast and aggressive initial explorations, the first 10 policy updates—each update consisting

of 10 roll-outs—were run in a simulated environment under large exploration noise. Subsequently, seven

additional policy updates—each consisting of five roll-outs—were run on the real setup totaling 17 minutes

of training. Figure 7 (a) shows the reduction of cost first in simulation and subsequently using the real

robot in (b). At each update cycle, the larger circles (red in simulation and blue in real experiments)

represent the cost of a “clean” roll-out, that is, the roll-out where the best current policy was evaluated.

The small light circles represent the cost of “exploration” roll-outs, that is, the roll-outs where the base

policy was added with additional noise in an attempt to generate better (lower cost) versions of the base

policy. The variance of costs was larger in simulation than in the real setup due to the larger exploration

of the parameters. Compared to the costs in simulation (which aggressively decreased from −2 to −9

due to larger exploration noise) the absolute cost on the real robot was lower (decreasing from −14 to

−16) as the ball had a larger travel range on the real setup.

Figure 7 (c) and (d) show the changes in the policy in simulation (light red) and subsequently after

switching to the real system (light blue). The final solutions in simulation and on the real robot are shown

as the thick red and blue curves, respectively. The final coupling functions indicate that the stiffness and

phase differences have large values at the beginning of the cycle. The pushing occurred at the beginning,

requiring a large phase difference to put the motion of the robot ahead of the ball. The high stiffness also

enforces a close phase tracking at this critical stage. As the ball returns to the robot (between 50-150

degrees), the phase difference increases again such that the hands returned faster than the ball, and the

difference decreases at the end, an indication that the robot attempts to approximate its phase with the

ball phase for a synchronized deceleration under high tracking gains. From Figure 7 (c) it is noted that

the coupling gain K increased substantially when the optimization switched from simulation to the real

case. This increase suggests compensation for the dynamics of the real robot, which presents delays,

tracking error, and compliance; while in the simulator the robot was as an ideal reference tracker with

infinite bandwidth.

11

(a) (b) (c) (d)

Simulation
Real robot

Simulation
Real robot

Pushing ReceivingFree flight

Simulation Real robot

Exploration
Clean roll-out

Exploration
Clean roll-out Pushing ReceivingFree flight

Ph
as

e
sh

ift
 (d

eg
)

Target phase (deg) Target phase (deg)

Figure 7: Cost and policy improvements on the repetitive ball pushing task. (a-b) Cost decrease in simulation
followed by optimization in the real robot. The big and small circles represent the cost of exploitation (clean) and exploration
(noisy) roll-outs, respectively. The lines are first-order polynomials fit to the clean roll-outs. Due to the stochastic nature
of the exploration, it is not possible to make strong guarantees on the convergence (e.g. monotonic). However, the trend
lines show clearly that the improvement was achieved within the set of updates. The optimization histories of the phase
difference α(φtarget) and of the stiffness K(φtarget) are shown in (c) and (d), respectively. The thick red curves represent
the optimized functions in simulation and the thick blue line its final result after optimization using the real robot.

3.1.3. Evaluating the Optimal Policy with Spatio-Temporal Disturbances

Figure 8 (a-b) shows the use of the optimized policy on undisturbed ball trajectories as the robot

repeatedly pushed and received the ball for an entire minute. While the plotted trajectories were obtained

in real experiments, the figures are overlaid with a graphical image of the robot to facilitate interpretation.

As shown in the side-view in (a), the strongest pushes moved the ball almost 1.5 meters away from the

robot in the Y direction. Although the ball was not externally disturbed, the lateral swing of the ball

barely stayed on the sagittal plane of the robot (the plane that cuts the body symmetrically in right

and left sides) creating elliptical paths 44 cm wide and forcing the robot hands to move sideways (see

subplot (a)). The large variation of ball trajectories is the result of uneven dual-arm pushes, in part,

due to the difficulties in setting a perfectly symmetric scenario. Subplot (b) shows two segments where

the robot moves to block the ball (left), and subsequently pushes it (right). The left and right hand’s

non-trivial and dissimilar paths act in concert to achieve a successful manipulation of the ball. These

complex actions are the result of imitating the coordination implicit in the human demonstration.

We validated the fast adaptive mechanism of PPMPs employing spatio-temporal disturbances. The

robot reacted almost immediately—with a bandwidth between 30-60 Hz which was limited by the fre-

quency of the RGB-D camera. Figure 8 (c) shows a trial where a person often disturbed the task. The

sequence of snapshots shows the moment someone grasped the ball mid-flight and pretended a pass to

the right and then to the left of the robot. Note from frames 1 and 4 that the arms of the robot are fully

extended as the ball is moving away from the robot. In frames 3 and 6, the robot preemptively positioned

its hands to receive the ball at the appropriate positions as the phase of the robot was largely advanced

with respect to the ball. This behavior is the exact one described in our initial motivation in Figure 2

where the robot advances its phase to wait for the ball landing. The normalized curves at the right of Fig-

ure 8 (c) show the trajectories of the ball and the robot’s hand moving along the pushing direction. In the

first segment, the ball flight was disturbed by someone vigorously rocking the ball back and forth. In the

second half, the ball was released and the robot could graciously recover and bring the ball back to a limit

cycle (refer to the video here https://gjmaeda.github.io/videos/PPMP/PPMP_ball_pushing.mp4, to

12

https://gjmaeda.github.io/videos/PPMP/PPMP_ball_pushing.mp4

44 cm

147 cm

z
(m

)

(a)

(c)

(d)

(b)

Receiving Pushing

y
(m

)

y
(m

)
4 5 6

1 2 3

Y
 (

n
o
rm

a
li
z
e
d
)

Ball

Robot

Human disturbance Ball in free motion

Arm retracted Rope limit

End-effector path

Figure 8: Extended experiments using the final policy. (a) The paths of the ball and hands as the robot interacted
with the ball for one minute. (b) Two real trajectories of the ball receiving and pushing the ball. Note the non-trivial
asymmetry of hand trajectories. The robot’s illustration is shown to facilitate interpretation. (c) A one-minute trial where
a person grabbed the ball and pretended to pass the ball but reversed the trajectory a few times. Note from the snapshots
that the robot tried to adapt by changing its pose. The curves show the left-hand trajectory in the Y direction as the robot
responded to the changes in the ball flight. The phase plane trajectories of an undisturbed experiment are shown in (d).
The highlighted areas represent the physical constraints of the robot joint limits and the length of the rope. A video of the
ball pushing experiment can be accessed with the link https://gjmaeda.github.io/videos/PPMP/PPMP_ball_pushing.mp4.

13

https://gjmaeda.github.io/videos/PPMP/PPMP_ball_pushing.mp4

better understand the dynamics and intensity of disturbances applied during the experiments).

Figure 8 (d) shows the phase plane trajectories corresponding to an undisturbed limit cycle of the

ball. The low variance at the leftmost part of the phase of the robot is due to the arm being in a fully

retracted pose, ready for a push. In the case of the ball phase plane, the variance is lower at the rightmost

part of trajectories as the ball was achieving its maximum travel range constrained by the length of the

rope. The phase-plane trajectories of the ball evidence a stable limit cycle. In extended experiments, the

robot could maintain the ball on a limit cycle for more than five minutes, which resulted in more than

120 consecutive pushes.

This experiment allowed us to evaluate the responsiveness of the PPMPs when adapting to the

extremely large and arbitrary spatio-temporal disturbances introduced by a human manipulating the

ball. Also, the experiments provided empirical evidence that the dimensionality of the PPMPs makes it

feasible to train the policy with reinforcement learning and to run the algorithm at 30 Hz on a system

comprised of 20 DoFs in total (17 DoF robot of the robot and three DoFs of the moving ball). It is worth

noting that the PPMP was learned in a semi-model-free setting, where the only modeling assumption

was the two coupled oscillators. In contrast, in online optimal control, the designer is first met with the

challenge of modeling, identifying parameters, and validating the predictions of the bi-manual contact

forces which, per se, is arguably more challenging (if not impractical depending on the required accuracy)

than the entire design of the PPMP itself. Only after the system identification step is overcome, the

designer would be able to proceed with the implementation of the necessary optimization routines.

3.2. PPMPs on Single Stroke Tasks: Handover Case

PPMPs are not exclusive to cyclic tasks. The methodology can be applied without modifications to

single-stroke tasks as well. As in the cyclic case, the only mild assumption is that the dynamics of the

coupled oscillators are sufficient to describe the temporal interactions of the task at hand. Experiments

in handovers were chosen not only because handovers are one of the most studied tasks in the field of

physical human-robot interaction [23] but also because it is a task where timing is very relevant for fluid

and natural interactions.

3.2.1. Handover Demonstrations

We implemented a single PPMP to interact with a human partner under different timings in handovers.

To this end, we recorded a total of 30 demonstrations of a cup handover where the cup was empty, and 30

demonstrations where the cup was filled with water. The upper row in Figure 9 (a) shows a sequence of

snapshots of one demonstration instance. The right hand trajectories of each demonstrator were recorded

as a sequence of Cartesian coordinates xA
1:T ,x

B
1:T , with xt = [x, y, z]ᵀ ∈ R3 via motion capture. The

first snapshot shows the convention of coordinate frames where the horizontal and vertical axes are on

the sagittal plane of the agent. Figures 9 (a.1, a.2) show the two sets of demonstrations as a distribution

(mean ± two standard deviations) for the case when the cup was empty and full, respectively. The figures

also indicate the mean settling time of the handover. As expected, when the cup is empty the settling

time is shorter than when the cup is full (see indications on plots (a.1, a.2)). In the context of phase

dynamics control, the underlying hypothesis is that the giver acts as the temporal reference, and the

receiver adapts its phase according to the giver’s progress.

14

(a) Human-human demonstrations

(b) Human-robot experiments

AgentBAgentA

Target

(b.4)(b.3)

Robot Robot

(b.1)

zz

y

Human
Human

(a.1)

1.1 sec.

(a.2)

1.8 sec.
Cup empty Cup full

P
h

a
s
e

 (
d

e
g

)

Time (s) Time (s)

Cup full

Cup empty
Giver

Receiver

(a.3) (a.4)

Cup empty Cup full

Human giver Human giver

Robot receiverRobot receiver

1.8 sec.
Cup full

1.1 sec.
Cup empty

Cup empty

Cup full

(b.2)

Giver

Receiver

Figure 9: PPMP in discrete handover tasks. (a) Snapshots show one instance of human demonstrations using mark-
erless skeleton tracking. (a.1, 2) Show 30 demonstrations for the cases where the cup is empty and filled with water,
respectively. (a.3, 4) The progress of the phases using the averaged values on the empty and full cup cases. The grey
curves represent the opposite cup state to facilitate comparison. (b) Experiments using the real robot where agent A
was replaced by the humanoid. (b.1,2) Examples of handovers using the real robot as a receiver. Subplot (b.3) shows
the case where the human tricks the robot by pretending passes but retracting his hand a few times. (b.4) The robot
acting as a giver where its phase evolves in open-loop. A video of the handover experiment can be accessed via the link
https://gjmaeda.github.io/videos/PPMP/PPMP_handover.mp4.

Subplots (a.3-4) summarizes the phase relationship by the average progress of the human phases for

both empty and full cup cases. The phase of each agent was computed with (7). To facilitate comparison,

the figure shows the opposite cup condition (full/empty) in grey. It is noticeable that when the cup is

empty, the phase of the slower agent (the receiver) reaches 1800 at around 1.5 seconds, while when the

cup is filled with water its phase achieves the same value at around 2 seconds. In this single stroke case,

only the first and second quadrants of the phase plane are traversed as no returning path exists.

3.2.2. Handover Experiments with the Real Robot

Compared to the cyclic ball pushing, controlling the handover is possible with a linear control law

with constant coupling parameters K and α. In this case, it is not hard to tune these two values by hand.

The plots in Figure 9 (b.1) show the trajectories of four different experiments where the trajectories of the

human and the robot hands movement are overlaid on the distribution of demonstrations corresponding to

the empty cup case. The values of the coupling were set to K = 30 and α = −650(π/1800). Figure 9 (b.2)

15

https://gjmaeda.github.io/videos/PPMP/PPMP_handover.mp4

show four similar cases for slower movements of the giver handing over a cup full of water. Compared to

the empty cup response, the more sluggish response of the robot was achieved by decreasing the value of

the coupling stiffness to K = 20.

The humanoid upper body was used to replace the role of agent A as the receiver of the object. At

each updated position of the giver’s hand, estimated using the color of the glove and a depth sensor,

the PPMP provided the vector of joint angles qt that defined the corresponding pose of the robot. The

computed joint angles were used as reference angles for the low-level position tracking controller of the

robot. Figure 9 (b) shows a sequence of snapshots of a handover where the robot receives the object

from the human giver. All experiments used the same phase portrait with different coupled oscillator

parameters.

The fast phase adaptation and prediction of PPMP make the robot react as if it had a sense of time

similar to humans. This feature is shown in Figure 9 (b.3) where during the handover the human purposely

rocked his hand back and forth before finally handing over the object. The robot could adaptively advance

and retract its hand, in the same way, people would do in such a situation. To better understand the

dynamics of the experiments, an extensive sequence of handovers can be watched in the linked video.

For completeness, and to demonstrate the flexibility of the oscillator dynamics formulation, we

swapped the roles between the human and the robot by running the phase estimator in open-loop.

That is, the indexes of the phase-portrait P (x, q)φrobot were run as a function of time where timing was

reproduced from one of the demonstrations, φrobot
1:T = φA

1:T . In this way, the robot moved independently

of the human partner’s progress, although the position of its hands was still being coordinated with that

of the human. One particular instance is shown in Figure 9 (b.4).

3.2.3. PPMP vs Hard-Coded Trajectories

As discussed, one of the main advantages of PPMPs is to be a semi-model-free approach which only

requires the general dynamics of coupled oscillators to generate predictive adaptation. In contrast, take

for example the recent work of Pan et al. [24] who implemented a handover controller where the joint

trajectories were hard-coded for each degree of freedom of a 7-DoF arm. To account for the case where

the robot needed to retract its arm, Pan et al. used a kind of finite-state machine approach to activate the

action for arm retraction. In PPMPs, the arm retraction is achieved without additional high-level rules,

as it is simply the result of the adaptation provided by the coupled oscillators. Also, PPMPs dynamically

control the timing along the entire trajectory while in [24] only the initial delay can be manually adjusted.

The reader is invited to watch the video https://www.youtube.com/watch?v=w1Ff4nqcUvk of Pan et

al., and compare with the accompanying handover video of this paper https://gjmaeda.github.io/

videos/PPMP/PPMP_handover.mp4 while qualitatively observing the similarities in the robot’s reaction.

While in [24] a robot acting based on engineered trajectories and human-made rules allowed the authors

to focus on the effect of timing in social human-robot interaction, our focus with PPMPs is to eliminate

hard-coding or engineering of tasks to pave the way for autonomous learning.

4. Discussion

This section discusses aspects of PPMPs concerning other primitive representations. In particular,

we apply the method in the cyclic task of walking to compare it against a periodic Dynamical Movement

16

https://www.youtube.com/watch?v=w1Ff4nqcUvk
https://gjmaeda.github.io/videos/PPMP/PPMP_handover.mp4
https://gjmaeda.github.io/videos/PPMP/PPMP_handover.mp4

Primitive used as a Central Pattern Generator. We also present some other observations related to direct

feedback tracking and the temporal smoothness of the PPMP.

4.1. Phases in other Movement Primitive Representations

In manipulation, many authors have proposed different ways to provide primitives with time-independence.

These can vary from the use of Hidden Semi-Markov Models to learn the transition dynamics of the

movement[25], to scaling the velocity of a learned dynamics used for trajectory prediction [26], to using

the ratio between the current robot state and the remaining path till the goal [27], to cite a few (a concise

review with many approaches can be found in [3]). Dynamical Movement Primitives (DMPs) [11] have

long suggested the explicit use of phases to replace time, and more recently, Probabilistic Movement

Primitives (ProMPs) [28] also followed the same idea. However, in real robots, the use of phases in

existing formulations has been quite simplistic; mainly as an open-loop signal to synchronize multi-DoF

systems and to adapt the speed of movements. Here, we state three advantages of PPMPs with respect

to existing movement primitive formulations.

Fast Predictions in Phase-Space. PPMP provides a principled and efficient way to control phases.

Also, note that its oscillator can be used with existing movement primitives explicitly parameterized by

phases such as DMPs and ProMPs. Compare the phase mechanism of PPMP, DMP, and ProMP cases,

φ̇robot = ω +K sin(φtarget − φrobot + α) PPMP,

τ φ̇robot = −αsφrobot DMP in the discrete case,

τ φ̇robot = 1 DMP in the cyclic case,

φrobot = f(t) ProMP,

(15)

where αs is a positive constant value, τ is the system time constant, and f(t) is any monotonically

increasing function. Since the phase of DMPs and ProMPs evolve in open-loop, temporal adaptation relies

on external mechanisms to correct the phase (e.g. by using Kalman filter when model parameterization is

possible [10], or by learning models for unknown object dynamics as it was done in [3]). In contrast, Phase

Portrait Movement Primitives (PPMPs) exploits the use feedback in the form of the coupled oscillators

for tracking and predicting phases, thus achieving much faster adaptation under much lower computation

and modeling costs. On the other hand, the reactive feedback nature of the coupled oscillators should

not be confused with the inability to predict states in the future as a positive phase shift advances the

robot ahead of the current temporal evolution of the interaction.

Scalability for Joint-Space Control. A significant computational advantage over DMPs for joint

space control is the fact that a single PPMP is used regardless of the number of degrees-of-freedom of

the robot. This is possible because the same PPMP encodes the correlation of all degrees-of-freedom of

the robot, which is a feature also provided by ProMPs and GMMs. On the other hand, for joint-space

DMPs and joint-space GPs [29, 30], the number of primitives scales with the number of joints.

Fast Spatial Adaptation on Cyclic Tasks. The third advantage of our method is evident in cyclic

tasks. PPMPs natively allow the robot pose to be adjusted instantaneously, at each time step. Periodic

DMPs require optimization over the entire limit cycle as its goal attractor can only modify the averaged

behavior of the cycle but not the instantaneous position at each time step. We illustrate this difference

17

Figure 10: DMP vs PPMP in a rhythmic task. Upper row: a sequence of snapshots where PPMP is used to infer the
joint angles of a robotic leg given the footstep placement while executing a walking cycle. The phase oscillator dynamics
define the progress of the walking pattern while the lateral target motion dictates the foot placement. (a-b) when using
DMPs, smaller foot placement errors (mean and maximum) can be obtained by allowing the optimizer to converge. In turn,
waiting for convergence leads to low re-planning frequencies. By controlling the maximum number of allowed iterations,
the re-planning frequency can be increased up to 30 Hz, at the expense that the error of the DMP also increases as the
optimization process is truncated. In (c) the effect of the planning frequency is observed in terms of the DMP trajectories.
Trajectories with larger errors were planned faster. In general, PPMP plans at kHz order while achieving the same error of
DMPs planned at 10 Hz.

by a robotic walking task as shown in Figure 10 where PPMPs and DMPs are compared quantitatively.

As shown by the snapshots, in this task, the incoming desired footstep placement (assumed given by a

perception system) moves sideways and the robot must adapt the foot position laterally while the walking

cycle evolves. On rhythmic DMPs, this adaptation requires optimizing the forcing function parameters

with a cost that penalizes for lateral error position In PPMPs adaptation requires solving q ∼ P (q|xtarget)

which has a closed-form solution for Gaussian distributions. Figure 10 (a) show that the DMP error in

footstep placement increases with the increase of the replanning frequency4. In the case of PPMP, no

optimization is required and the frequency of replanning runs two orders of magnitude faster5. Finely

optimized DMPs can achieve less error than the PPMP at the expense of slower updates (less than 5

Hz). This is because PPMP computes the robot pose by inference. As such, its accuracy depends on

how close the true distribution fits the assumption of normally distributed spatial models. For fine tasks

that demand accuracy, a mixture of PPMPs or optimization on the PPMP solution may be necessary.

4As an optimizer, we used the PiBB [20] algorithm and controlled the replanning frequency by changing the maximum
number of parameter updates.

5Both methods were implemented in Python and run on the same computer.

18

4.2. Direct Tracking via Position Feedback

In general, direct feedback tracking of the position of the ball or the hand of a human (e.g. with

a Cartesian controller under visual servoing) cannot accomplish the same level of task complexity of

movement primitives, including PPMPs. In a sense, direct feedback provides robotics reflexes: given a

stimulus, it outputs an instantaneous action that does not involve reasoning over future states. On the

other hand, PPMPs make use of the kinematic distributions and positive phase shifts to advance the pose

of the robot with respect to the current phase of the target. For example, the motor actions of receiving

and pushing the ball are not solvable by pure reflexes given by a Cartesian tracking controller. Since a

feedback controller attempts to decrease the tracking error, the robot would try to move the hands until

they touch the ball, but not to push it. Also, because the ball moves faster than the arm, direct tracking

of position is prone to fail. In contrast, the learned PPMP policy allowed the robot to act in a predictive

manner, by positioning the hand at the right location before the ball arrived and by later pushing the

ball far away, a feature that no visual servoing controller can provide.

4.3. Spatio-Temporal Smoothness of PPMPs

One distinct characteristic of PPMPs is that each of the joint distributions on the phase portrait is

independent of each other. That means that, in principle, the temporal states of the robot are allowed

to “jump” or “skip” in time. This is different from most primitive formulations that usually rely on

some mechanism to guarantee temporal smoothness to generate suitable robot commands. In the case

of DMPs, the smoothness is due to the use of radial basis functions used to encode the forcing function.

ProMPs similarly achieve this smoothness with the difference that the basis functions encode the positions

and velocities. Other methods where the smoothness is provided by construction due to the appropriate

choice of kernels or features are Gaussian Processes [29] and Gaussian Mixture Models [25] as primitives.

The mechanism responsible for temporal smoothness in PPMPs is the dynamics of the coupled os-

cillators, which is governed by a differential equation (1). Since the phase is the result of an integral, it

can only evolve continuously over time which enforces the temporal smoothness of robot commands. The

spatial smoothness in PPMPs is a natural consequence that the robot motion is conditioned on the target

motion. In the experiments of this article, the targets (the ball, the human hand, the footstep placement)

moved smoothly in space, that is, they did not “teleport”, and as a consequence, the conditioned robot

movement behaved accordingly. PPMPs shows promise in future applications under hybrid controllers

where hard-switches may occur as PPMPs do not enforce smoothness regarding spatial transitions.

5. Conclusions

Real-world implementations of fast humanoid control executing bi-manual manipulation have been

extremely scarce and existing cases have usually relied on domain knowledge, carefully engineered solu-

tions, and heavy computation, all of which are not suited for autonomous learning. This article proposed

PPMP, a learning control method suited for fast and anticipative tasks with a native capability to es-

timate temporal dynamics. Coupled oscillators provides the robot with predictive adaptation to the

timings of the interaction while the associated joint distributions are used as priors to spatially correlate

all degrees-of-freedom in the task. The only open parameters of the method are the coupling compo-

nents between the oscillators, rendering a low dimensional representation that is amenable to the use of

19

reinforcement learning in real robots. While this approach is inspired by observed motor skill character-

istics found in animals[5, 31] our main goal is not to reproduce biological systems per se. Rather, the

PPMP goal is to be a fast humanoid control method for autonomous learning that can be designed with

minimal domain knowledge and run under a low computational budget. In regards to the literature of

movement primitives for robot control, building the method from scratch to include a phase predictor

led to a method that is not only faster and simpler to implement particularly for rhythmic tasks, but

whose scalability is not affected by the number of degrees-of-freedom of the system. The semi-model-free

approach means that PPMPs are predictive in nature without relying on online optimization while being

efficient enough to have its policy optimized via reinforcement learning on real, high dimensional tasks.

References

[1] B. Bäuml, T. Wimböck, G. Hirzinger, Kinematically optimal catching a flying ball with a hand-arm-

system, in: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,

2010, pp. 2592–2599.

[2] T. Erez, K. Lowrey, Y. Tassa, V. Kumar, S. Kolev, E. Todorov, An integrated system for real-time

model predictive control of humanoid robots, in: 2013 13th IEEE-RAS International Conference on

Humanoid Robots (Humanoids), 2013, pp. 292–299. doi:10.1109/HUMANOIDS.2013.7029990.

[3] S. Kim, A. Shukla, A. Billard, Catching Objects in Flight, IEEE Transactions on Robotics 30 (EPFL-

ARTICLE-198748) (2014).

[4] M. M. G. Ardakani, B. Olofsson, A. Robertsson, R. Johansson, Real-time trajectory generation

using model predictive control, in: 2015 IEEE International Conference on Automation Science and

Engineering (CASE), 2015, pp. 942–948. doi:10.1109/CoASE.2015.7294220.

[5] D. N. Lee, 16 Visuo-Motor Coordination in Space-Time, in: Advances in Psychology, Vol. 1, Elsevier,

1980, pp. 281–295.

[6] D. M. Wolpert, M. Kawato, Multiple paired forward and inverse models for motor control, Neural

networks 11 (7) (1998) 1317–1329.

[7] K. A. Thoroughman, R. Shadmehr, Learning of action through adaptive combination of motor

primitives, Nature 407 (6805) (2000) 742.

[8] D. Wolpert, J. Diedrichsen, J. Flanagan, Principles of sensorimotor learning, Nature Reviews Neu-

roscience (2011).

[9] S. Schaal, Is imitation learning the route to humanoid robots?, Trends in cognitive sciences 3 (6)

(1999) 233–242.

[10] J. Kober, K. Mulling, O. Kromer, C. Lampert, B. Scholkopf, J. Peters, Movement templates for

learning of hitting and batting, in: Proceedings of the 2010 IEEE International Conference on

Robotics and Automation, IEEE, 2010, pp. 853–858.

20

https://doi.org/10.1109/HUMANOIDS.2013.7029990
https://doi.org/10.1109/CoASE.2015.7294220

[11] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives:

Learning attractor models for motor behaviors, Neural computation 25 (2) (2013) 328–373.

[12] C. E. Garćıa, D. M. Prett, M. Morari, Model predictive control: Theory and practice—A survey,

Automatica 25 (3) (1989) 335–348. doi:10.1016/0005-1098(89)90002-2.

[13] T. Marcucci, R. Deits, M. Gabiccini, A. Bicchi, R. Tedrake, Approximate hybrid model predictive

control for multi-contact push recovery in complex environments, in: 2017 IEEE-RAS 17th Interna-

tional Conference on Humanoid Robotics (Humanoids), 2017, pp. 31–38. doi:10.1109/HUMANOIDS.

2017.8239534.

[14] J. Kober, D. Bagnell, J. Peters, Reinforcement Learning in Robotics: A Survey, International Journal

of Robotics Research (IJRR) (2013).

[15] A. H. Cohen, P. J. Holmes, R. H. Rand, The nature of the coupling between segmental oscillators

of the lamprey spinal generator for locomotion: A mathematical model, Journal of mathematical

biology 13 (3) (1982) 345–369.

[16] J. Morimoto, G. Endo, J. Nakanishi, G. Cheng, A biologically inspired biped locomotion strat-

egy for humanoid robots: Modulation of sinusoidal patterns by a coupled oscillator model, IEEE

Transactions on Robotics 24 (1) (2008) 185–191.

[17] G. Maeda, O. Koc, J. Morimoto, Reinforcement Learning of Phase Oscillators for Fast Adaptation to

Moving Targets, in: Proceedings of The 2nd Conference on Robot Learning, Vol. 87 of Proceedings

of Machine Learning Research, PMLR, 2018, pp. 630–640.

[18] M. P. Deisenroth, G. Neumann, J. Peters, et al., A Survey on Policy Search for Robotics., Founda-

tions and Trends in Robotics 2 (1-2) (2013) 1–142.

[19] C. Bishop, Pattern Recognition and Machine Learning, Vol. 4, springer New York, 2006.

[20] F. Stulp, O. Sigaud, et al., Policy improvement methods: Between black-box optimization and

episodic reinforcement learning (2012).

[21] E. Theodorou, J. Buchli, S. Schaal, Reinforcement learning of motor skills in high dimensions: A

path integral approach, in: Robotics and Automation (ICRA), 2010 IEEE International Conference

On, IEEE, 2010, pp. 2397–2403.

[22] J. Morimoto, K. Doya, Reinforcement learning state estimator, Neural Comput. 19 (3) (2007) 730–

756. doi:10.1162/neco.2007.19.3.730.

[23] K. W. Strabala, M. K. Lee, A. D. Dragan, J. L. Forlizzi, S. Srinivasa, M. Cakmak, V. Micelli, Towards

seamless human-robot handovers, Journal of Human-Robot Interaction 2 (1) (2013) 112–132.

[24] M. Pan, E. Knoop, M. Bacher, G. Niemeyer, Fast handovers with a robot character: Small senso-

rimotor delays improve perceived qualities, in: IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2019.

21

https://doi.org/10.1016/0005-1098(89)90002-2
https://doi.org/10.1109/HUMANOIDS.2017.8239534
https://doi.org/10.1109/HUMANOIDS.2017.8239534
https://doi.org/10.1162/neco.2007.19.3.730

[25] S. Calinon, A. Pistillo, D. G. Caldwell, Encoding the time and space constraints of a task in explicit-

duration hidden Markov model, in: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ Inter-

national Conference On, IEEE, 2011, pp. 3413–3418.

[26] S. Kim, E. Gribovskaya, A. Billard, Learning motion dynamics to catch a moving object, in: Pro-

ceedings of the IEEE/RAS International Conference on Humanoids Robots (HUMANOIDS), 2010,

pp. 106–111.

[27] P. Englert, M. Toussaint, Reactive phase and task space adaptation for robust motion execution, in:

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2014, pp. 109–116.

[28] A. Paraschos, C. Daniel, J. Peters, G. Neumann, Probabilistic Movement Primitives, in: Advances

in Neural Information Processing Systems (NIPS), 2013, pp. 2616–2624.

[29] M. Schneider, W. Ertel, Robot learning by demonstration with local gaussian process regression, in:

Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

IEEE, 2010, pp. 255–260.

[30] G. Maeda, M. Ewerton, T. Osa, B. Busch, J. and Peters, Active Incremental Learning of Robot

Movement Primitives, in: Proceedings of Machine Learning Research (PMLR) 1st Annual Conference

on Robot Learning (CoRL), Vol. 78: Conference on Robot Learning (CoRL), 2017, pp. 37–46.

[31] M. T. Turvey, Coordination., American psychologist 45 (8) (1990) 938.

[32] P. Abbeel, A. Coates, A. Y. Ng, Autonomous helicopter aerobatics through apprenticeship learning,

The International Journal of Robotics Research (2010).

[33] A. Vakanski, I. Mantegh, A. Irish, F. Janabi-Sharifi, Trajectory Learning for Robot Programming

by Demonstration Using Hidden Markov Model and Dynamic Time Warping, IEEE Transactions

on Systems, Man, and Cybernetics, Part B (Cybernetics) 42 (4) (2012) 1039–1052. doi:10.1109/

TSMCB.2012.2185694.

[34] G. Cheng, S.-H. Hyon, J. Morimoto, A. Ude, J. G. Hale, G. Colvin, W. Scroggin, S. C. Jacobsen,

CB: A humanoid research platform for exploring neuroscience, Advanced Robotics 21 (10) (2007)

1097–1114.

Appendix

Data Augmentation on Ball Pushing Experiments

The design of the probabilistic phase portrait asks for variations of the task to reveal the correlation

between positions during training. These variations are usually achieved by multiple demonstrations.

However, demonstrations are not only time-consuming, but spatial correlations can only be correctly

computed if all demonstrations are free from time misalignment, which usually demands an extra step

to eliminate time warping as done by many usually via dynamic-time warping (e.g. [32, 33]). To avoid

22

https://doi.org/10.1109/TSMCB.2012.2185694
https://doi.org/10.1109/TSMCB.2012.2185694

these problems, in the ball pushing task we used an artificial data augmentation procedure described as

follows.

Assume paired trajectories consisting of robot joint angles and the respective target movements are

available (qdemo,xdemo)1:T from a single demonstration. At each time step, define the mean of a mul-

tivariate Gaussian distribution as µt = [qdemo
t ,xdemo

t]. Using the known kinematics of the robot (no

dynamical models are required), we can then simulate N spatial variations by perturbing the target with

a x′t,n = xdemo
t + ε where ε is zero-mean Gaussian noise. The respective robot pose is found by using

inverse kinematics on the perturbed targets where q′t,n ← IK(x′t,n, q
demo
t). The mean pose qdemo

t is used

as the initial guess for the IK solver in an attempt to obtain similar joint configurations and thus preserve

the normal distribution also in joint space—note that is is a heuristic for which not guarantees can be

made, but in practice has worked well. This process is repeated for each time step along the recorded

nominal trajectory, providing a training set of N sample variations of length T , such that {(q′,x′)1:N}1:T .

The procedure described in Section 2.2 can then be applied to estimate the distribution parameters of

the PPMP.

Experimental Setup

We used the upper body of a human-sized hydraulic humanoid comprised of seven DoFs in each arm,

and three DoFs on the waist (details in [34]). The robot is position-controlled at the joint level, with

PD controllers running at 500 Hz on a desktop computer (Intel Core i7-4790) using Ubuntu 16.04 with a

patched real-time kernel. For simulations, we implemented a kinematic model of the robot together with

a dynamic model of a ball swinging like a pendulum.

The estimation of the position of the human hand in the handover experiment and of the ball position

in the pushing experiment were done by color segmentation using OpenCV methods. The perception

routines were run on the same control loop of the PPMP implemented in Python 2.7. The PPMP runs

on a conventional Ubuntu 18.04 laptop (Intel Core i7-7700HQ). The joint angles output by the PPMP

were transmitted asynchronously to the real-time controller using socket communication.

The effective frequency of joint updates was limited by the RBG-D camera in use. When using

a Kinect2 camera, the planning frequency was approximately 30 Hz. When using a Real Sense D450

camera, the planning frequency was approximately between 45 to 60 Hz. For the quantitative evaluation

of the performance, only the Kinect2 camera was used. The Kinect2 was positioned externally, at the

side of the robot. In the video, it is also possible to see a version of the experiment under the robot’s

point of view when the D450 was used instead and mounted on the robot’s head.

23

	1 Introduction
	2 Coupled Oscillators and Phase Portraits
	2.1 Timing the Dynamics of Interactions via Coupled Oscillator
	2.2 Kinematic Coordination via Probabilistic Phase Portrait
	2.3 Consolidating Oscillators and Phase Portraits as a Single Policy

	3 Results
	3.1 Phase Portrait Movement Primitives on a Cyclic Ball Pushing Task
	3.1.1 PPMP Design from Motion Capture
	3.1.2 Policy Search on the Real Robot
	3.1.3 Evaluating the Optimal Policy with Spatio-Temporal Disturbances

	3.2 PPMPs on Single Stroke Tasks: Handover Case
	3.2.1 Handover Demonstrations
	3.2.2 Handover Experiments with the Real Robot
	3.2.3 PPMP vs Hard-Coded Trajectories

	4 Discussion
	4.1 Phases in other Movement Primitive Representations
	4.2 Direct Tracking via Position Feedback
	4.3 Spatio-Temporal Smoothness of PPMPs

	5 Conclusions

